

WWW.TEADAL.EU

Grant Agreement No.: 101070186 Topic: HORIZON-CL4-2021-DATA-01-01
Call: HORIZON-CL4-2021-DATA-01 Type of action: HORIZON-RIA

D6.2 INTEGRATION REPORT

Revision: v.1.0

Work package WP6

Task T6.3, T6.4

Due date 31/08/2024

Submission date 31/08/2024

Deliverable lead ALMAVIVA

Version 1.0

Authors
Bruno Feitas (UBIWHERE), Andrea Falconi (MARTEL), Samantha Hine
(ALMAVIVA), Vincenzo Cirillo (ALMAVIVA), Sergio Sestili (ALMAVIVA)

Reviewers Pierluigi Plebani (POLIMI), Alessio Carenini (CEFRIEL), Katherine Barabash (IBM)

Abstract

The deliverable focuses on reporting the work associated with the whole integration
process of the platform with the testbed done during the project. It will describe the
main phases of the integration process, highlighting the evidence from the outcomes
of trials.

Keywords
TEADAL, Report, Integration, Deployment, Node, Cluster, Testbed, Trial, CI/CD,
Pipeline

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 2 of 39

Document Revision History

Version Date Description of change List of contributor(s)

V 0.1 09/05/2024 ToC Samantha Hine (ALMAVIVA)

V 0.2 27/06/2024 First draft
Bruno Feitas (UW), Samantha Hine (ALMAVIVA), Andrea
Falconi (MARTEL)

V 0.3 25/07/2024
Complete contents, ready for
review

Bruno Feitas (UW), Samantha Hine (ALMAVIVA), Andrea
Falconi (MARTEL), Vincenzo Cirillo (ALMAVIVA), Sergio
Sestili (ALMAVIVA)

V 1.0 31/08/2024 Final version

Bruno Feitas (UW), Samantha Hine (ALMAVIVA), Andrea
Falconi (MARTEL), Vincenzo Cirillo (ALMAVIVA), Sergio
Sestili (ALMAVIVA), Pierluigi Plebani (POLIMI), Alessio
Carenini (CEFRIEL), Kathrine Barabash (IBM)

DISCLAIMER

Funded by the European Union (TEADAL, 101070186). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

COPYRIGHT NOTICE

© 2022 - 2025 TEADAL Consortium

Project funded by the European Commission in the Horizon Europe Programme
Nature of the deliverable: R
Dissemination Level

PU
Public, fully open, e.g. web (Deliverables flagged as public will be automatically
published in CORDIS project’s page) ✔

SEN Sensitive, limited under the conditions of the Grant Agreement
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 3 of 39

EXECUTIVE SUMMARY

This document presents the main phases of the integration process and the work associated
with the integration of the TEADAL software with the testbed, also reporting the evidence of
the trials that have been put in place on a pilot per pilot base.

As a key aspect of the TEADAL project, a software contribution process has been put in place,
to integrate technological components into a unified platform. The process leverages a Git
repository hosted on a Gitlab service to maintain the master code of the platform. The
Kubernetes-based TEADAL platform articulates in a TEADAL cluster that organises service
mesh and core services components. The Linux Operating System and Kubernetes provide
the integration layer among the software components and the hardware resources, reducing
complexity both in distribution and runtime processes.

The TEADAL CI/CD tools are based on Git and Kubernetes and leverage ArgoCD to easily
distribute and update the TEADAL cluster on the testbeds. The CI/CD process envisages
cloning the master “TEADAL.Node” repository to easily customise it according to the use case
requirements and then deploying the customised TEADAL cluster on the testbed. Thanks to
this configuration, once Kubernetes and ArgoCD are installed on the testbed, the TEADAL
cluster deployment is fully automated and takes a few minutes to complete, increasing
efficiency and facilitating the adoption of the TEADAL platform.

The whole process has been carefully tested on a pilot-by-pilot basis. A complete set of CI/CD
pipelines has been defined for each pilot case. As each pilot case envisages a number of
TEADAL Nodes featuring different organisations, multiple cloning of the master
“TEADAL.Node” is required along with the related pipelines. Dedicated pipelines are required
for the distribution of software on edge resources. For each pilot case, a trial has been carried
out with a single pilot node deployment. The TEADAL platform integration has been
demonstrated by loading a small dataset on the pilot node and then deploying and running a
REST service exposing a single Federated Data Product. The current deliverable reports the
evidence of each trial.

The complex of the trials that have been performed confirms that the deployment of the
TEADAL platform is a matter of minutes and requires basic Linux and DevOps skills. The
TEADAL platform usage is based on Federated Data Products, requiring programming skills
with no language constraints.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 4 of 39

TABLE OF CONTENTS

EXECUTIVE SUMMARY ..3

TABLE OF CONTENTS ...4

 LIST OF FIGURES ..5

 LIST OF TABLES ...6

ABBREVIATIONS ..7

1 INTRODUCTION ..8

2 TEADAL NODE INTEGRATION AND RUNTIME ...9

2.1 Testbed Site ...9

2.2 TEADAL Node ..9

2.3 TEADAL Cluster ...9

2.4 TEADAL Baseline Repository ... 12

2.5 Integration Process ... 14

3 TEADAL CI/CD TOOLS ... 15

3.1 GitLab ... 16

3.2 Kubernetes ... 17

3.3 ArgoCD ... 18

4 TEADAL CI/CD PROCESSES ... 20

4.1 TEADAL.Node on Gitlab ... 21

4.2 Cloning and customising the TEADAL.Node ... 22

4.3 Updating the customised node.. 23

4.4 Deploying the customised node .. 23

5 TEADAL CI/CD PIPELINE ... 24

5.1 CI/CD Tools Integration .. 24

5.2 CI/CD Pipelines Design .. 27

6 PILOT NODES DEPLOYMENT .. 33

6.1 Pilot #1 - Evidence-Based Medicine ... 34

6.2 Pilot #2 - Mobility Federated Access Point .. 35

6.3 Pilot #3 - Smart Viticulture Data Sharing ... 36

6.4 Pilot #4 - Industry 4.0 fast KPI calculation ... 37

6.5 Pilot #6 - Regional Planning for Environmental Sustainability 38

7 CONCLUSIONS ... 39

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 5 of 39

 LIST OF FIGURES

FIGURE 1: TEADAL CLUSTER TECHNOLOGIES .. 10

FIGURE 2: TEADAL GITOPS WORKFLOW EXAMPLE ... 12

FIGURE 3: TEADAL.NODE FORKING EXAMPLE .. 13

FIGURE 4: GITLAB ARCHITECTURE ... 16

FIGURE 5: KUBERNETES ARCHITECTURE .. 17

FIGURE 6: ARGOCD ARCHITECTURE ... 18

FIGURE 7: TEADAL CI/CD SEQUENCE .. 20

FIGURE 8: TEADAL GIT REPOSITORY .. 21

FIGURE 9: TEADAL.NODE GIT REPOSITORY... 21

FIGURE 10: TEADAL PILOTS GIT REPOSITORY .. 22

FIGURE 11: PULL-BASED DEPLOYMENT ARCHITECTURE ... 24

FIGURE 12: CI/CD PIPELINE DIAGRAM ... 25

FIGURE 13: CI PIPELINE .. 26

FIGURE 14: CD PIPELINE .. 26

FIGURE 15: PILOT #1 CI/CD PIPELINE DIAGRAM .. 27

FIGURE 16: PILOT #2 CI/CD PIPELINE DIAGRAM .. 28

FIGURE 17: PILOT #3 CI/CD PIPELINE DIAGRAM .. 29

FIGURE 18: PILOT #4 CI/CD PIPELINE DIAGRAM .. 30

FIGURE 19: PILOT #6 CI/CD PIPELINE DIAGRAM .. 31

FIGURE 20: BASELINE DATA LAKE DISTRIBUTION ... 34

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 6 of 39

 LIST OF TABLES

TABLE 1: EVIDENCE-BASED MEDICINE TRIAL CONFIGURATION 35

TABLE 2: MOBILITY FEDERATED ACCESS POINT TRIAL CONFIGURATION 36

TABLE 3: SMART VITICULTURE DATA SHARING TRIAL CONFIGURATION 37

TABLE 4: INDUSTRY 4.0 FAST KPI CALCULATION TRIAL CONFIGURATION 38

TABLE 5: REGIONAL PLANNING FOR ENVIRONMENTAL SUSTAINABILITY TRIAL
CONFIGURATION ... 38

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 7 of 39

ABBREVIATIONS

API Application Programming Interface

CD Continuous Delivery/Deployment

CI Continuous Integration

FDP Federated Data Product

GitLab DevOps Platform and Services

GitOps Git-based DevOps approach

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IaC Infrastructure as Code

K8s Kubernetes

OPA Open Policy Agent

OpenAPI Standard specification for REST APIs

OTA Over-The-Air

sFDP shared Federated Data Product

TEE Trusted Execution Environment

ToC Table of Contents

VM Virtual Machine

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 8 of 39

1 INTRODUCTION

The TEADAL (“Trustworthy, Energy-Aware federated Data Lakes along the computing
continuum”) project mission is to provide key technologies to enable sharing data and
computation among the cloud-edge continuum (gravity) managed by a single organisation and
in a data lake federation environment (friction) where the nodes of such federation are
managed by different entities. All this by enabling private, confidential, and energy-efficient
data management.

The main goal of the project is to develop a software toolset for data lake technologies to
provide trusted, verifiable, and energy-efficient data flows, both in a stretched data lake and
across a trustworthy mediator-less federation of data lakes, based on a shared approach for
defining, enforcing, and tracking privacy/confidentiality requirements balanced with the need
for energy reduction.

The main phases of the integration of the platform with the testbed done during the project are
described in this deliverable, reporting the work associated with the integration process and
highlighting the evidence from trials.

The document consists of 7 sections, including this short Introduction.

The 2nd section describes the TEADAL Node Integration and Runtime. Starting from the
definition of Testbed Site, TEADAL Cluster and TEADAL Node, the section provides an
overview of the runtime architecture of a TEADAL Node, of the deployment process and the
TEADAL repository. Finally, a reference to the guides that have been produced to help with
the integration of TEADAL software with pilot testbeds is given.

The 3rd section describes TEADAL CI/CD Tools that leverages GitLab, Kubernetes and
ArgoCD to put in place simple and efficient integration and delivery processes.

The 4th section details TEADAL CI/CD Processes, describing the structure of the software
repositories and the software update and deploy processes.

The 5th section provides a pilot per pilot description of CI/CD Pipelines.

The 6th section describes the Pilot Nodes Deployment, reporting the evidence of the trials that
have been performed to demonstrate the integration among TEADAL software and pilot
testbeds for the deployment of a pilot node.

The 7th section reports the Conclusions.

To provide references and evidence, the document links external contents related to the
TEADAL project operations. At the present, to access linked contents a registration could be
required.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 9 of 39

2 TEADAL NODE INTEGRATION AND RUNTIME

The TEADAL Node is the building block used to implement the different Pilot Testbeds in their
specific topology1. This section describes how the TEADAL Node has been realised through
the integration of many components, representing the TEADAL Node different abstraction
layers.

2.1 TESTBED SITE

A TEADAL Testbed Site encompasses the hardware and infrastructure on which a TEADAL
Cluster is deployed. This hardware includes the physical machines or virtualized environments
necessary to run the TEADAL data lake services. The Testbed Site is where the provisioning
of machines occurs, forming the foundational layer of the TEADAL architecture.

2.2 TEADAL NODE

The TEADAL Node integrates essential components such as ArgoCD and Istio within a
containerized environment. The TEADAL Node Baseline includes all the TEADAL tools and
serves as the foundation for further development and customization specific to each cluster’s
needs.

Each TEADAL node includes a backbone software stack on which cluster-specific data
services run. The backbone stack includes general-purpose data lake components
(Kubernetes, Istio, ArgoCD, etc.) as well as TEADAL-specific components (Catalogue,
Advocate, TEE, Pipelines, Policies, etc.) that allow producers and consumers to share data in
a trustworthy and secure way, according to agreed-upon governance, privacy and energy-
efficiency policies. Above this backbone sit local, cluster-specific data products and services—
i.e., federated data products (FDPs), shared federated data products (SFDP), etc.

2.3 TEADAL CLUSTER

A TEADAL cluster includes both the hardware and software deployed to run an instance of a
TEADAL data lake. Notably, the software implements the various TEADAL tools and services
that allow multiple TEADAL clusters to be joined in a federation where producers and
consumers can share data in a trustworthy and secure way, according to agreed-upon
governance, privacy and energy-efficiency policies2. These tools and services are part of each
TEADAL cluster whereas hardware, data products and corresponding data services (FDPs
and SFDPs3) typically differ from cluster to cluster. Each TEADAL cluster is instantiated and
then subsequently managed using an Infrastructure-as-Code approach.

1 For a logical description of the TEADAL Node, please refer to Deliverable 6.1 “Testbed Design”
2 Please refer to Deliverable 2.2 “Pilot Cases’ Intermediate Description And Initial Architecture Of The
Platform”, Deliverable 4.1 “Stretched Data Lakes First Release Report” and Deliverable 5.1 “Trustworthy
Data Lakes Federation First Release Report” for details
3 Please refer to Deliverable 3.1 “Gravity And Friction-Based Data Governance” for details

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 10 of 39

From a conceptual standpoint, a TEADAL Cluster is composed of several layers of processes
and hardware, arranged hierarchically. Higher layers utilise the functionality provided by lower
layers, while lower layers do not depend on higher layers4.

Referring to Figure 1 we examine the technological specification of each layer in turn, from the
bottom up.

FIGURE 1: TEADAL CLUSTER TECHNOLOGIES

The hardware layer is the lowest layer. This is the cluster hardware (computers, network) on
which all the TEADAL cluster software runs. In the case of a public cloud deployment, the
hardware would typically be virtualized, whereas physical machines would be provisioned for
an on-premises scenario. In the simplest case, the whole cluster can run on just one machine,
whereas more computation-intensive scenarios require several machines.

The mesh infrastructure layer interfaces with the hardware layer to provide the service mesh
functionality, with Kubernetes at its core for cluster operation, running on a Linux based
operating system. This layer manages computational resources and orchestrates the

4 For a complete description of the data and service mesh runtime architecture, please refer to
Deliverable 2.3

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 11 of 39

deployment and operation of services by means of containers. Kubernetes interfaces with
DirectPV to create a distributed storage facility out of the disks attached to each node whereas
Istio complements Kubernetes with mesh control and data planes. The Istio control plane
manages a network of proxies that form the Istio data plane, which captures and processes
service traffic. The Istio control plane is responsible for overall system management and
orchestration, such as scheduling, scaling, and maintaining the desired state of the system. In
contrast, the Istio data plane is responsible for the actual movement of packets through the
network, handling the flow of application traffic based on the internal policies defined by the
Istio control plane. This allows to augment service functionality at runtime without requiring any
modifications to the services themselves. The TEADAL cluster exploits this to transparently
route and balance service traffic, secure communication and access to service resources
(through Keycloak and OPA), and monitor service operation (through Kiali, Prometheus and
Grafana). Finally, the mesh infrastructure includes Argo CD, a GitOps continuous delivery tool
for Kubernetes, to monitor the cluster Git repository in order to automatically reconcile the
desired deployment state declared in the repository with the actual live state of the cluster.

Running on the mesh infrastructure, the core services layer provides TEADAL baseline
functionality which enables federated data products. In this layer, PostgreSQL and MinIO
provide database and object storage functionality, respectively. Workflow services are also
included: Kubeflow for managing machine learning operations and Airflow for engineering data
pipelines. Last but not least, the core services layer hosts the TEADAL-specific tools that allow
multiple TEADAL nodes to be joined in a federation where producers and consumers can share
data in a trustworthy and secure way, according to agreed-upon governance, privacy and
energy-efficiency policies. Catalogue, Advocate, Trusted Execution Environment (TEE),
Pipelines, and Policies (security, gravity and friction) are all examples of TEADAL services and
tools in the core services layer.

Finally, products is the top layer, hosting cluster-specific data products and services—i.e.,
federated data products (FDPs), shared federated data products (SFDP), etc. As detailed in
D3.1, a federated data product (FDP) extends the notion of data mesh product to cater for
sharing data in a data lake federation according to the governance rules of that federation. A
shared federated data product (SFDP) encapsulates a consumer-producer agreement
(contract) about sharing a part of an FDP and provides the means for the consumer to process
the shared data only within the bounds of the agreed-upon contract.

2.4 DEPLOYMENT

A TEADAL cluster is instantiated and then subsequently updated through a GitOps approach
whereby the desired cluster runtime is declared in an online Git repository and a dedicated
GitOps cluster service reconciles the desired runtime with the actual cluster state. Thus, there
is a Git repository associated with every TEADAL cluster and, as briefly mentioned earlier,
there is an ArgoCD service in that cluster which monitors the Git repository in order to
automatically reconcile the desired deployment state with the actual live state of the cluster.

The deployment state in the Git repository is declared through a set of YAML files which
Kustomize5 can process. Each of these files declares a desired instantiation and runtime
configuration for some of the components in the TEADAL cluster. Collectively, the files at a
given Git revision describe the deployment state of the entire TEADAL cluster at a point in
time. Changes to the live system are triggered through an automated workflow which the
cluster administrator initiates by creating a new revision of some configuration files (in YAML

5 Kustomize (https://kustomize.io/) is a tool to create Kubernetes cluster configuration
resources modularly by assembling and extending Kubernetes resource definitions in YAML
files.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 12 of 39

format) in the Git repository. On detecting a new revision, ArgoCD transitions the cluster to the
new desired state. The diagram in Figure 2 exemplifies the GitOps workflow.

FIGURE 2: TEADAL GITOPS WORKFLOW EXAMPLE

Indeed, the diagram depicts a typical scenario where the cluster administrator carries out a
change to a data service. As can be seen, the Git repository contains descriptors for an FDP
named my-fdp as well as other descriptors, not explicitly shown, for the service and data mesh
components in the various cluster runtime layers mentioned earlier. The latest Git revision is
v5 where the FDP service port is 6776. The administrator changes the port to 5445, making a
new Git revision v6. ArgoCD periodically polls the Git repository to detect any new revisions.
Thus, shortly after the administrator pushed revision `v6` to the Git repository, ArgoCD realises
that the current cluster runtime state refers to a stale revision, v6, whereas v6 is the latest.
Hence, ArgoCD proceeds to interpret the stanzas in the YAML file as a command line that the
Kubernetes client can understand. After assembling the required command, ArgoCD invokes
the Kubernetes client with it. In turn, the Kubernetes client calls the Kubernetes API which
finally triggers the desired deployment actions on the live cluster, resulting in the deployment
state to reflect the YAML configuration at revision v6—i.e., my-fdp's port is now 5445.

2.4 TEADAL BASELINE REPOSITORY

Each TEADAL Cluster has a corresponding Git repository and ArgoCD service to manage
deployments. The baseline software stack (service mesh, TEADAL tools) is developed in a
master repository (TEADAL.Node). Each cluster repository is a fork of this master, allowing
inheritance of baseline components and customization for specific deployments. This setup
ensures consistency and simplifies maintenance across different pilot rollouts. Below follows
a more structured and detailed example.

Thus, for each TEADAL cluster deployed as part of a TEADAL pilot rollout there is a
corresponding Git repository and ArgoCD service running in that cluster that reconciles the Git
repository with the cluster. For example, the cluster for the viticulture pilot is deployed from the

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 13 of 39

Smart Viticulture TEADAL.Node repository6 and runs its own Argo CD service which monitors
the Smart Viticulture TEADAL.Node repository and, upon detecting a change in the repository,
reconfigures the viticulture cluster to match the updated deployment declarations in the
repository.

Now, any two pilot rollout repositories need to include the same baseline software stack —
service and data mesh, TEADAL tools, etc. In other words, the baseline software stack
comprises the components in the mesh infrastructure and core services layers. As detailed
earlier, components of the baseline software stack include service mesh elements like Istio,
monitoring tools like Prometheus and Grafana as well as TEADAL-specific tools such as the
Catalogue and Advocate. Almost always, the stack will be the same for any two given pilot
rollouts, hence the code in their respective repositories will also be the same.

For this reason, the baseline software stack is developed and managed in a master repository
(TEADAL.Node) and each pilot rollout repository is a fork of the master which contains data
products and services specific to the pilot rollout. Forking allows each pilot rollout repository to
inherit the baseline components from TEADAL.Node, while also enabling customization for
specific deployments. This arrangement avoids duplicating the baseline software stack in each
pilot rollout repository and provides the means to easily propagate any change from the master
repository to the pilot rollout forks as illustrated in the diagram in Figure 3.

FIGURE 3: TEADAL.NODE FORKING EXAMPLE

6 https://gitlab.teadal.ubiwhere.com/teadal-pilots/viticulture-pilot/smart-viticulture-teadal-node

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 14 of 39

Thus, when a new feature or update is added to the master repository, it can be seamlessly
integrated into all forks, ensuring consistency and reducing maintenance overhead.

2.5 INTEGRATION PROCESS

Developers follow a typical cloud-native workflow to integrate their software into a TEADAL
cluster. As most TEADAL functionality is delivered through cloud (micro)services, developers
typically carry out several steps to make their software available in a TEADAL cluster as a
cloud service. First, the software is packaged in container images and these images published
to an online registry. Then Kubernetes resources are developed with Kustomize and added to
the Git repository from which the cluster is deployed. These Kubernetes resources specify how
to download and run the published images and typically configure service storage, traffic
routing, connections to other services, identity and access management, GitOps deployment,
and possibly other cluster resources.

Although the actual details of the integration procedure may vary considerably from service to
service, the conceptual workflow is mostly the same. Hence, to make the integration procedure
somewhat more concrete, the TEADAL core developers have implemented several working
examples of how to integrate services, in particular FDPs and SFDPs. Detailed documentation
accompanies these examples, and it can be found in the TEADAL node repositories:

● Deployment Guide: https://gitlab.teadal.ubiwhere.com/teadal-tech/teadal.node/-
/blob/main/docs/QuickStart.md

● Integration Process Guide: https://gitlab.teadal.ubiwhere.com/teadal-
tech/integration.guide/-/blob/main/integration.md

Following the Deployment Guide, the deployments process of each node articulates the
following steps:

● Linux environment setup
● Manual deployment of Kubernetes
● Manual deployment of Istio
● Manual deployment of Argo CD
● Automated deployment of TEADAL tools from the pilot repository, via ArgoCD

The above-mentioned Integration Process Guide describes the typical cloud-native workflow
to integrate pilot software into a TEADAL cluster.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 15 of 39

3 TEADAL CI/CD TOOLS

On TEADAL, CI/CD process helps TEADAL developers to avoid bugs and code failures while
maintaining a continuous cycle of software development and updates. As TEADAL grows,
features of CI/CD can help decrease complexity, increase efficiency, and streamline
workflows.

Because CI/CD automates the manual human intervention traditionally needed to get new
code from a commit into production, downtime is minimised, and code releases happen faster.
With the ability to quickly integrate updates and changes to code, developers' feedback can
be incorporated more frequently and effectively, which means positive outcomes for the
TEADAL code base.

The CI in CI/CD refers to continuous integration, an automation process for developers that
facilitates the more frequent merging of code changes back to a shared branch, or “trunk”. As
these updates are made, automated testing steps are triggered to ensure the reliability of
merged code changes.

CI (Continuous Integration) states that the entire code for an application should be kept in a
common repository so that whenever the developer checks the code into the repository, a
script is triggered that picks the latest code from the repository, integrates it with the existing
code and runs the test cases designed according to the application. Multiple CI tools are
available in the market like Jenkins, Bamboo, GitLab, Subversion, etc. For CI to work, the tool
must be integrated with a source code management system. Git is one such common tool that
developers widely use for maintaining the versioning of code, GitLab is a Git hosting service
used by TEADAL. Each developer works on its branch, which is cut from a master branch.
Whenever a developer implements the functionality or fixes a bug, it raises a merge request
from the current branch to the master branch. On the TEADAL Git repository, the merge
request can be accepted by the Developer, Maintainer or Owner of the repository. This
acceptance can be done via the GitLab UI. A script to execute test cases is triggered which
runs all the unit tests written. If the code passes all the test cases, the merge is completed,
otherwise the merge is rejected. Every developer is responsible for merging his code into the
main branch. This adds a sense of accountability on the developer such that one needs to
make sure that his changes should not impact the build but should not hamper fellow
developers' work.

The CD in CI/CD refers to continuous delivery or continuous deployment, which are related
concepts that sometimes get used interchangeably. Both are about automating further stages
of the pipeline, but they’re sometimes used separately to illustrate just how much automation
is happening.

CD (Continuous Delivery) is defined as an ability to deploy new features and bug fixes into the
live server as and when required. The CD part is executed after a successful CI where all the
updated code is integrated to the master branch. A script runs that picks the code from the
master branch, prepares the build, and deploys it to a test environment or a production
environment. This way the developers can test the code beyond unit tests so that updates
across multiple parameters such as UI testing, integration testing, etc. can be tested in order
to identify the issues pre-emptively. With continuous delivery, there also comes a term called
continuous deployment and the major difference between these is that there is no manual
intervention or confirmation required when following continuous deployment which means that
with every code check-in, a new build will be deployed onto the specified server.

Continuous deployment in TEADAL is assured by using GitOps, which means that a Git
repository is used as the single source of truth for the status of the infrastructure. This

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 16 of 39

repository, which is on GitLab, contains configuration files that describe the TEADAL
architecture in a format appropriate to be parsed by the CI/CD tools, IaC (Infrastructure as
Code). Like this, it’s possible to guarantee that each deployment is in an easily auditable known
state. The GitOps deployment tool used in TEADAL is ArgoCD, this has been adopted to
simplify the deployment, the customisation, and the maintenance of the TEADAL Nodes.
Details on this can be found in a subsequent paragraph/section dedicated to ArgoCD.

3.1 GITLAB

GitLab is a web-based Git hosting service that provides open and private repositories, issue-
following capabilities, and wikis, as presented in Figure 4. It is a complete DevOps platform
that enables professionals to perform all the tasks in a project, from project planning and
source code management to monitoring and security. Additionally, it allows teams to
collaborate and build better software7. It provides features such as CI/CD pipelines. It does not
provide any support for additional plugins to be installed and the entire configuration is done
on the pipeline itself.

Teams can build software faster, automate software delivery, shorten cycle times, and
increase developer productivity. It can also scan for vulnerabilities with every push code
automatically.

GitLab service helps the engineering teams remove toolchain complexity and accelerate
DevOps adoption. It enables the team to develop an application that allows developers to

7 https://www.simplilearn.com/tutorials/git-tutorial/what-is-gitlab

FIGURE 4: GITLAB ARCHITECTURE

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 17 of 39

manage all efforts with one UI and simplifies the administration by employing one central entry
point for all repositories.

GitLab advantages include:

● Version control and repository management based on Git
● Issue management, bug tracking and boards
● Code Review functionality and Review Apps tool
● CI/CD tool
● Code Quality (Code Climate)
● ChatOp tool (Mattermost)
● Service Desk (Ticketing System)

For CI/CD, TEADAL relies on GitLab services such as GitLab CI Pipelines and GitLab
Container Registry. This improves collaboration and simplifies management, leading to
increased efficiency and better project outcomes.

As outlined in the previous section, UBIWHERE-provided GitLab service hosts a master
TEADAL.Node repository used by TEADAL developers to commit code8. The master
repository is cloned for each TEADAL cluster. Within TEADAL project operations, the cloned
repositories are grouped by pilot case and these groups are linked in a pilot project area9. Each
pilot leverages the TEADAL tools from the central repository and enriches its own repository
with custom application, according to the pilot case requirements.

3.2 KUBERNETES

Kubernetes, originally developed by Google, is an open-source container orchestration tool,
its architecture is in Figure 5. Essentially, it manages containers, which can be Docker
containers or other containerization technologies. Kubernetes helps to manage applications
that consist of hundreds or even thousands of containers. These applications can run on
physical machines, virtual machines, in the cloud, or even in hybrid environments.

8 https://gitlab.teadal.ubiwhere.com/teadal-tech/teadal.node
9 https://gitlab.teadal.ubiwhere.com/teadal-pilots

FIGURE 5: KUBERNETES ARCHITECTURE

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 18 of 39

Kubernetes makes it possible to manage the cluster and orchestration. For TEADAL, MicroK8s
is used. MicroK8s is a way to get Kubernetes up and running with self-healing high availability,
transactional OTA updates, and secure sandboxed kubelet environments, quickly spin nodes
up on CI/CD processes and reduce production maintenance costs. MicroK8s is small, simple,
and secure. It also includes a curated collection of manifests for common Kubernetes
capabilities and services, like, Service Mesh (Istio, Linkerd), serverless (Knative), monitoring
(Fluents, Prometheus, Grafana, Metrics), and automatic updates to the latest Kubernetes
version10. This lightweight version of Kubernetes makes TEADAL as lightweight as it can be
by providing a minimalistic and efficient K8s distribution that requires fewer system
resources11.

3.3 ARGOCD

ArgoCD is a declarative continuous delivery tool for Kubernetes. It follows the GitOps pattern
of using Git repositories as the source of truth for defining the desired application state.

ArgoCD automates the deployment of the desired application states in the specified target
environments. Application deployments can track updates to branches, tags, or pinned to a
specific version of manifests at a Git commit. It’s possible to see the ArgoCD architecture in
Figure 6.
ArgoCD is implemented as a Kubernetes controller that continuously monitors running
applications and compares the current, live state against the desired target state (as specified
in the Git repo). This helps to ensure the desired state is maintained, reducing configuration
drift and enhancing reliability. A deployed application whose live state deviates from the target
state is considered “OutOfSync”. ArgoCD reports & visualises the differences while providing

10 https://github.com/canonical/microk8s
11 https://canonical.com/blog/introduction-to-microk8s-part-1-2

FIGURE 6: ARGOCD ARCHITECTURE

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 19 of 39

facilities to automatically or manually sync the live state back to the desired target state. This
capability allows for faster detection and correction of issues, improving system stability and
developer productivity. Any modifications made to the desired target state in the Git repo can
be automatically applied and reflected in the specified target environments12.

Inside TEADAL, ArgoCD works as a GitOps IaC tool for managing the MicroK8s cluster.
ArgoCD was chosen for its robust automation and integration capabilities, which align well with
the needs of managing a dynamic and scalable environment. This software is not centrally
deployed. Instead, each TEADAL node will host its own instance of ArgoCD, configured
according to its needs. This decentralised approach allows for greater flexibility and autonomy
of each node, ensuring that configurations can be tailored to specific requirements while
maintaining consistency across the entire infrastructure.

12 https://argo-cd.readthedocs.io/en/stable/

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 20 of 39

4 TEADAL CI/CD PROCESSES

TEADAL CI/CD workflow involves three tools: GitLab, ArgoCD, and Kubernetes. These tools
provide services that are able to work together and complete the CI/CD workflow of the
TEADAL node. It is possible to summarise the CI/CD processes in five sections (see Figure
7):

● Developer Git commit to GitLab
● GitLab request to API Handler
● API Handler trigger to ArgoCD
● ArgoCD instructs changes
● HELM packages the application with the updates and makes it available to deploy

The CI/CD Process on TEADAL starts with the Developer. The Developer interacts with the
TEADAL Git repository that leverages Gitlab services provided by UBIWHERE. GitLab
services provide the main repository of the TEADAL node and are responsible for the CI
process.

The Developer can commit code changes to the Git repository, which is hosted on this link:
https://gitlab.teadal.ubiwhere.com. Inside the Git repository exists a lot of different repositories,
each with its function that can be updated by their group members.

TEADAL has an API Handler that acts as an intermediary component, responsible for receiving
Webhooks from GitLab communicating that code has been committed. This communication is
an HTTP callback that is triggered by specific events. ArgoCD periodically polls the Git
repository to detect any new revisions

ArgoCD, responsible for the CD processes, synchronises the application state in the MicroK8s
cluster with the new state defined in the GitLab repository. In short, ArgoCD automates the
deployment (CD process) and ensures that the application matches the Git repository. Each
TEADAL node hosts its own instance of ArgoCD, unlike GitLab which is common to every
TEADAL node. In the end, before the node deployment, HELM packages the application using
Charts. Once the application is packaged it gets deployed on the node inside the cluster.

FIGURE 7: TEADAL CI/CD SEQUENCE

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 21 of 39

4.1 TEADAL.NODE ON GITLAB

The whole TEADAL Git resources include repositories for development in TEADAL Tech, pilot-
related repositories in TEADAL Pilots, and repositories for the Dockerfiles created to integrate
the tools needed by the Pilots, in TEADAL Public Images and TEADAL Images. The TEADAL
repository is then divided into four Groups (Figure 8).

FIGURE 8: TEADAL GIT REPOSITORY

Into the TEADAL Tech group, the Teadal.Node area contains the baseline software (Figure 9)
articulated in four subfolders of the deployment folder. With respect to the TEADAL Cluster
layers described in Section 2.3, Figure 1

 the mesh-infra folder hosts the “mesh-infra” layer software (Istio, Keycloack, etc.)
depicted in Figure 1;

 the pilot-services and plat-app-services folders host the “products” layer software (pilot
FDPs/sFDPs, pipelines, etc.) depicted in Figure 1;

 the plat-infra-services hosts the “core layer” baseline software (PostgreSQL, Kubeflow,
etc.) depicted in Figure 1.

FIGURE 9: TEADAL.NODE GIT REPOSITORY

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 22 of 39

The TEADAL Pilot groups pilot repositories. Pilot developers can clone and customise the
TEADAL Node, and develop their FDPs and sFDPs, having everything separate. This
configuration helps with maintaining a better environment for everyone, where the different
deployments of the pilots don't influence each other (see Figure 10).

UBIWHERE is responsible for maintaining the Git repository and managing who has access
to it. Every time a new developer or maintainer joins the TEADAL project, they should ask
UBIWHERE to have access to their Git repository, so they are able to customise and update
the TEADAL software.

4.2 CLONING AND CUSTOMISING THE TEADAL.NODE

Each pilot developer clones the Teadal.Node repository in a Pilot Node, customises it and
deploy it to the established hardware resources. On the node repository there's a readme file
that contains the Deployment Guide: this “quick start” document explains every step needed
to clone and deploy the TEADAL node.

To clone the TEADAL node all it’s needed is to execute a “git clone” command on the
repository:

“git clone https://gitlab.teadal.ubiwhere.com/teadal-pilots/<name of pilot>/<name of pilot>.git”

So, if the developer changes the “name of pilot” to their repository name and executes the
command line it will clone the updated TEADAL repository. The TEADAL software and dummy
FDPs will be available in a directory named “name of pilot”.

After cloning the TEADAL node, it is necessary to proceed with the installation as described in
the Deployment Guide. Any issue with the installation process should be reported to
UBIWHERE.

The Deployment Guide is divided into the following parts:

● Setup the environment
● Install MicroK8s

FIGURE 10: TEADAL PILOTS GIT REPOSITORY

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 23 of 39

● Setup the Network
● Setup the Mesh
● K8s Storage
● Istio
● ArgoCD connection
● ArgoCD deployment
● K8s Secrets
● Checking the installation (ArgoCD, Istio, Storage, Security, DBs, Dummy FDP/SFDP)

A first deployment of the TEADAL cluster should be done before customising and updating the
software; tools like ArgoCD will be useful in those processes.

Now that the TEADAL cluster is ready, the developer can start customising it. The
customization can be done with the help of any code tools, like Visual Studio Code, or even
through the deployed tools GUI, such as ArgoCD GUI, MinIO GUI, or Keycloak GUI.

4.3 UPDATING THE CUSTOMISED NODE

To update the customised node, developers need to update the Git repository. For that, it’s
necessary to commit the changes to the origin repository via git commit (CI process). After
committing the updates and waiting some minutes for ArgoCD to fetch the changes, the Micro
K8s cluster will start receiving the updates and deploying what is new in the repository (CD
process).

In short, TEADAL CI/CD was developed so updating the node is the most straightforward and
automated process it can be, leaving the hard work of updating everything manually to the
CI/CD tools implemented (GitLab, ArgoCD, and Kubernetes).

4.4 DEPLOYING THE CUSTOMISED NODE

If the TEADAL cluster is already running in the machine as explained in subsection 3.3, the
process of deploying the customised node is automated. After deploying the first time with the
help of the quick start guide, all the updates made to the node will be automatically fetched
with ArgoCD. This ArgoCD implementation makes the job of the developer easier, after
deploying it once it’s not necessary to deploy it anymore.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 24 of 39

5 TEADAL CI/CD PIPELINE

TEADAL CI/CD pipeline works as a pull-based pipeline (Figure 11), which means that it has
an operator working from the inside of the environment taking the role of the deployment
pipeline while observing the environment repository. In TEADAL the operator working from the
inside of the environment is ArgoCD, and the application repository is based on GitLab.

5.1 CI/CD TOOLS INTEGRATION

CI/CD tools are designed to automate software Development and Testing processes. They
are triggered by commits to the codebase and integrate with code repositories, version
control systems, and DevOps tools13.

To build a CI/CD pipeline for Kubernetes it’s necessary a CI tool and a CD tool. In TEADAL
the technology responsible for the CI pipeline is GitLab and the responsible for the CD
pipeline is ArgoCD and Kubernetes (MicroK8s). Kubernetes, ArgoCD, and GitLab work
together to achieve the CI/CD pipeline. The diagram of the CI/CD pipeline between these
tools is shown in Figure 12.

13 https://bluelight.co/blog/best-ci-cd-tools

FIGURE 11: PULL-BASED DEPLOYMENT ARCHITECTURE

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 25 of 39

FIGURE 12: CI/CD PIPELINE DIAGRAM

GitLab realises the CI pipeline, which is the first half of the CI/CD pipeline (Figure 13). It
mainly involves the integration and testing of the committed code. The steps of the pipeline
are:

● Automate Code Checkout:

The CI pipeline begins with code checkout, this is where the latest code stored
in GitLab is pulled, ensuring the CI pipeline has the most recent version.

● Dependency Installation:

This step is responsible for the installation of dependencies, like libraries or
packages that the software needs to run properly.

● Run Tests:

This step is crucial, it involves executing tests that will check the software for
any errors or bugs.

● Build Container Image:

After the tests pass, it’s possible to build the container image.

● Push Image to Registry:

The last step of the CI pipeline is pushing the newly created container image
to the HELM registry.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 26 of 39

After all these steps, made with GitLab, the first half of the CI/CD pipeline is completed. Next,
is the CD pipeline that is made with ArgoCD and Kubernetes.

The CD pipeline involves the deployment of the newly created container images to the
production environment (Figure 14). It is composed of only two steps which are:

● Deployment Triggers:

These triggers are events that initiate the deployment process, these can be
manual or automatic CI pipeline triggers. In TEADAL these triggers are automatically
made by the API handler that receives requests from the GitLab CI pipeline.

● Deployment:

The final stage of the CI/CD pipeline, it is the deployment of the initial commit
to the production environment. It involves deploying the new version to the
established VMs.

After implementing all of the steps above a CI/CD pipeline is achievable. In TEADAL all these
steps gave the project a significant enhancement in the development process. Making it more
efficient, reliable, and robust.

FIGURE 13: CI PIPELINE

FIGURE 14: CD PIPELINE

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 27 of 39

5.2 CI/CD PIPELINES DESIGN

As explained in Section 3, the CI/CD pipeline leverages three main components: GitLab,
ArgoCD, and Kubernetes. The pipeline steps of each Pilot are similar however the different
architectures of the Pilots force some changes in the pipelines.

In the following subsections, Pilot pipelines are designed and described14.

Pilot #1 - Evidence-Based Medicine

Pilot #1, Evidence-Based Medicine, features an architecture with three Virtual Machines
(Figure 15), each hosting its own instance of the TEADAL node, a customised node specifically
developed for this pilot. Continuous development and monitoring of each TEADAL node are
facilitated by ArgoCD, which monitors the GitLab repository linked to each deployed node. A
separate repository is used for each VM.

The CI/CD pipeline steps are consistent across both VMs, ensuring a streamlined process for
managing the TEADAL nodes. The general pipeline steps for each VM with the deployed
TEADAL node are as follows:

● Developer Commits Code Updates to GitLab:
○ Developers make code updates and commit them to the associated GitLab

repository.
● GitLab CI Pipeline Gets Triggered:

○ The GitLab CI Pipeline is triggered upon detecting new commits (as detailed
in Section 3.1).

● ArgoCD Detects Changes:
○ ArgoCD monitors the updated GitLab repository and detects any changes.

14 Please, refer to Deliverable 2.3 “Pilot cases’ final description and intermediate architecture of the
platform” for the final pilot use cases’ description

FIGURE 15: PILOT #1 CI/CD PIPELINE DIAGRAM

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 28 of 39

● ArgoCD Synchronises the Kubernetes Cluster on the VM:
○ ArgoCD synchronises the Kubernetes cluster on the corresponding VM to

apply the updates.
● Kubernetes Manages Deployment, Scaling, and Operation:

○ Kubernetes takes charge of deploying, scaling, and operating the containers
within the cluster.

● Kubernetes Monitors the TEADAL Node:
○ Kubernetes continuously monitors the TEADAL node to ensure it is running in

the desired state by overseeing the deployed resources.

Pilot #2 - Mobility Federated Access Point

Pilot #2, Mobility Federated Access Point, features an architecture with two Virtual Machines
(Figure 16), each hosting its own instance of the TEADAL node, a customised node specifically
developed for this pilot. Continuous development and monitoring of each TEADAL node are
facilitated by ArgoCD, which monitors the GitLab repository linked to each deployed node. A
separate repository is used for each VM.

FIGURE 16: PILOT #2 CI/CD PIPELINE DIAGRAM

The CI/CD pipeline steps are consistent across VMs, ensuring a streamlined process for
managing the TEADAL nodes. The general pipeline steps for each VM with the deployed
TEADAL node are as follows:

● Developer Commits Code Updates to GitLab:
○ Developers make code updates and commit them to the associated GitLab

repository.
● GitLab CI Pipeline Gets Triggered:

○ The GitLab CI Pipeline is triggered upon detecting new commits (as detailed
in Section 3.1).

● ArgoCD Detects Changes:

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 29 of 39

○ ArgoCD monitors the updated GitLab repository and detects any changes.
● ArgoCD Synchronises the Kubernetes Cluster on the VM:

○ ArgoCD synchronises the Kubernetes cluster on the corresponding VM to
apply the updates.

● Kubernetes Manages Deployment, Scaling, and Operation:
○ Kubernetes takes charge of deploying, scaling, and operating the containers

within the cluster.
● Kubernetes Monitors the TEADAL Node:

○ Kubernetes continuously monitors the TEADAL node to ensure it is running in
the desired state by overseeing the deployed resources.

Pilot #3 - Smart Viticulture Data Sharing

Pilot #3, Smart Viticulture Data Sharing, features an architecture with one Virtual Machine
(Figure 17), hosting its own instance of the TEADAL node, a customised node specifically
developed for this pilot, and three Edge nodes. Different from the other pilots it also implements
three Edge nodes, these Edge nodes have their own instance of the TEADAL node but with
fewer technologies and capabilities, adapted to the Edge needs. However, the CI/CD pipeline
steps are the same, the only change is the GitLab repository associated with the node.
Continuous development and monitoring of each TEADAL node are facilitated by ArgoCD,
which monitors the GitLab repository linked to each deployed node. A separate repository is
used for each VM and Edge node.

FIGURE 17: PILOT #3 CI/CD PIPELINE DIAGRAM

The CI/CD pipeline steps are consistent across VMs, ensuring a streamlined process for
managing the TEADAL nodes. The general pipeline steps for each VM with the deployed
TEADAL node are as follows:

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 30 of 39

● Developer Commits Code Updates to GitLab:
○ Developers make code updates and commit them to the associated GitLab

repository.
● GitLab CI Pipeline Gets Triggered:

○ The GitLab CI Pipeline is triggered upon detecting new commits (as detailed
in Section 3.1).

● ArgoCD Detects Changes:Can you please check if it's only this?
● https://gitlab.teadal.ubiwhere.com/teadal-tech/integration.guide/-

/blob/main/integration.md
○ ArgoCD monitors the updated GitLab repository and detects any changes.

● ArgoCD Synchronises the Kubernetes Cluster on the VM:
○ ArgoCD synchronises the Kubernetes cluster on the corresponding VM to

apply the updates.
● Kubernetes Manages Deployment, Scaling, and Operation:

○ Kubernetes takes charge of deploying, scaling, and operating the containers
within the cluster.

● Kubernetes Monitors the TEADAL Node:
○ Kubernetes continuously monitors the TEADAL node to ensure it is running in

the desired state by overseeing the deployed resources.

Pilot #4 - Industry 4.0 Fast KPI Calculation

Pilot #4, Industry 4.0 Fast KPI Calculation, features an architecture with two Virtual Machines
(Figure 18), each hosting its own instance of the TEADAL node, a customised node specifically
developed for this pilot. Continuous development and monitoring of each TEADAL node are
facilitated by ArgoCD, which monitors the GitLab repository linked to each deployed node. A
separate repository is used for each VM.

The CI/CD pipeline steps are consistent across both VMs, ensuring a streamlined process for
managing the TEADAL nodes. The general pipeline steps for each VM with the deployed
TEADAL node are as follows:

FIGURE 18: PILOT #4 CI/CD PIPELINE DIAGRAM

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 31 of 39

● Developer Commits Code Updates to GitLab:
○ Developers make code updates and commit them to the associated GitLab

repository.
● GitLab CI Pipeline Gets Triggered:

○ The GitLab CI Pipeline is triggered upon detecting new commits (as detailed
in Section 3.1).

● ArgoCD Detects Changes:
○ ArgoCD monitors the updated GitLab repository and detects any changes.

● ArgoCD Synchronises the Kubernetes Cluster on the VM:
○ ArgoCD synchronises the Kubernetes cluster on the corresponding VM to

apply the updates.
● Kubernetes Manages Deployment, Scaling, and Operation:

○ Kubernetes takes charge of deploying, scaling, and operating the containers
within the cluster.

● Kubernetes Monitors the TEADAL Node:
○ Kubernetes continuously monitors the TEADAL node to ensure it is running in

the desired state by overseeing the deployed resources.

Pilot #6 - Regional Planning for Environmental Sustainability

Pilot #6, Regional Planning for Environmental Sustainability, features an architecture with two
Virtual Machines (Figure 19), each hosting its own instance of the TEADAL node, a customised
node specifically developed for this pilot. Continuous development and monitoring of each
TEADAL node are facilitated by ArgoCD, which monitors the GitLab repository linked to each

deployed node. A separate repository is used for each VM.

FIGURE 19: PILOT #6 CI/CD PIPELINE DIAGRAM

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 32 of 39

The CI/CD pipeline steps are consistent across both VMs, ensuring a streamlined process for
managing the TEADAL nodes. The general pipeline steps for each VM with the deployed
TEADAL node are as follows:

● Developer Commits Code Updates to GitLab:
○ Developers make code updates and commit them to the associated GitLab

repository.
● GitLab CI Pipeline Gets Triggered:

○ The GitLab CI Pipeline is triggered upon detecting new commits (as detailed
in Section 3.1).

● ArgoCD Detects Changes:
○ ArgoCD monitors the updated GitLab repository and detects any changes.

● ArgoCD Synchronises the Kubernetes Cluster on the VM:
○ ArgoCD synchronises the Kubernetes cluster on the corresponding VM to

apply the updates.
● Kubernetes Manages Deployment, Scaling, and Operation:

○ Kubernetes takes charge of deploying, scaling, and operating the containers
within the cluster.

● Kubernetes Monitors the TEADAL Node:
○ Kubernetes continuously monitors the TEADAL node to ensure it is running in

the desired state by overseeing the deployed resources.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 33 of 39

6 PILOT NODES DEPLOYMENT

To assess the integration of TEADAL platform components with pilot testbeds, an initial trial
configuration has been realised, deploying a single baseline node per pilot case.

As outlined in the Section 4, an ArgoCD implementation automates most of the job required to
pilot partners to deploy their TEADAL nodes.

Each pilot deployed a single node with baseline functionality. Thus, each pilot loaded sample
datasets and developed a Federated Data Product in order to validate through the pilot cases
the basic functionalities of the platform and ensure all components were working as intended
with the underlying supporting testbed.

As outlined in the previous sections, each pilot leverages the TEADAL mesh-infra and core
components from the central master repository and enriches its own repository with custom
applications, according to the pilot case requirements.

Following an iterative process, pilot testbeds will be continuously enriched with further nodes
and components, according to pipelines described in Section 5.

1.1. TRIAL OUTPUTS

The baseline data lake distribution consists in a list of tools (already introduced in Section 2)
that are included in the TEADAL node and enable Federated Data Products 15:

● Airflow: Management platform to define pipelines and workflows on data
● ArgoCD: GitOps IaC tool for Kubernetes clusters
● Keycloak: Access/authentication manager
● Kubeflow: Management platform to define pipelines and workflows on data related to

machine learning
● Istio: Service mesh network
● Monitoring tools:

○ Grafana: Platform for data visualisation
○ Prometheus: Tool for collection and storage of computing metrics
○ Kiali: Istio console to monitor and control the service mesh
○ Jaeger: Tracing tool to map data flows and requests

● MinIO: Object storage
● OPA (Open Policy Agent): Security Policy enforcement tool
● PostgreSQL: SQL database

These tools have been packed in a containerized distribution, according to the diagram in
Figure 20.

15 Please, refer also to section 9.5.3 in Deliverable 2.2 “Pilot cases’ intermediate description & initial
architecture of the platform V 1.0”

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 34 of 39

FIGURE 20: BASELINE DATA LAKE DISTRIBUTION

Once completed the node distribution, sample datasets were loaded on the selected storage
(MinIO or PostgreSQL) by means of TEADAL tools. Then FDPs were deployed and run, to test
the whole platform integration.

Details on the trial pilot testbed configurations are reported in the following subsections.

6.1 PILOT #1 - EVIDENCE-BASED MEDICINE

The Evidence-Based Medicine pilot experimented with the first deployment process with a
pipeline starting from the Git repository at https://gitlab.teadal.ubiwhere.com/teadal-
pilots/medicine-pilot/evidence-based-medicine-teadal-node-01/. The TEADAL node was
deployed on a VM provided by RIBERA on Azure cloud provider, featuring a Hospital data
lake.

A first dataset with a few patients data was loaded on MinIO by means of MinIO GUI. The
Patients Personal Information dataset description was made available on a Central Data
Catalog that has been deployed on a dedicated VM provided “as a service” by CEFRIEL and
can be viewed at https://kcong.cefriel.com:8087/assets/Dataset/Ribera%20Person%20Data .
Additional datasets descriptions were made available on the Catalog as well.

An FDP was designed to asyncly retrieve data, its OpenAPI specification is available at
https://gitlab.teadal.ubiwhere.com/teadal-pilots/medicine-pilot/fdp-medicine/-
/blob/main/api/fdp-medicine.yaml

The FDP deployment is still in progress; the FDP description was made available on the
Catalog at
https://kcong.cefriel.com:8087/assets/Federated%20data%20product/Ribera%20Salud%20fd
p-medicine

Table 1 reports the trial configuration as described above.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 35 of 39

Pilot #1 Evidence-based medicine

Node location RIBERA VM on Microsoft Azure

TEADAL.Node clone
https://gitlab.teadal.ubiwhere.com/teadal-pilots/medicine-pilot/evidence-based-
medicine-teadal-node/

Organisation Hospital

Dataset(s) loaded Patients Personal Information and clinical data.

Datasets description on Data Catalog Drug Exposure Data
https://kcong.cefriel.com:8087/assets/Dataset/Ribera%20Drug%20Exposure%20D
ata
Procedure Occurrence Data
https://kcong.cefriel.com:8087/assets/Dataset/Ribera%20Procedure%20Occurrenc
e%20Data
Person Data
https://kcong.cefriel.com:8087/assets/Dataset/Ribera%20Person%20Data
Observation Data
https://kcong.cefriel.com:8087/assets/Dataset/Ribera%20Observation%20Data
Measurement Data
https://kcong.cefriel.com:8087/assets/Dataset/Ribera%20Patient%20Measurement
%20Data

FDP REST API definition https://gitlab.teadal.ubiwhere.com/teadal-pilots/medicine-pilot/fdp-medicine/-
/blob/main/api/fdp-medicine.yaml

FDP source code on Gitlab https://gitlab.teadal.ubiwhere.com/teadal-pilots/medicine-pilot/fdp-medicine/-
/tree/main (In Progress)

FDP URL In Progress

FDP Description on Data Catalog https://kcong.cefriel.com:8087/assets/Federated%20data%20product/Ribera%20S
alud%20fdp-medicine

TABLE 1: EVIDENCE-BASED MEDICINE TRIAL CONFIGURATION

6.2 PILOT #2 - MOBILITY FEDERATED ACCESS POINT

The Mobility Federated Access Point pilot experimented with the first deployment process with
a pipeline starting from the Git repository at https://gitlab.teadal.ubiwhere.com/teadal-
pilots/mobility-pilot. The TEADAL node was deployed on a VM provided by POLIMI, featuring
the AMT Transport Operator data lake.

A first dataset with a few static data was loaded on MinIO by means of MinIO GUI. The GTFS
Open Data From AMTS Catania dataset description was made available on the Central Data
Catalog and can be viewed at
https://kcong.cefriel.com:8087/assets/Dataset/GTFS%20Open%20data%20from%20AMTS%
20Catania. Additional datasets descriptions were made available on the Catalog as well.

An FDP was designed to retrieve bus stops list; its OpenAPI specification is available at
https://gitlab.teadal.ubiwhere.com/teadal-pilots/mobility-pilot/fdp-amts-gtfs-static/-
/blob/main/api/fdp-amts-gtfs-static.yaml.

The FDP was deployed and tested using the endpoint at
http://mobility.teadal.ubiwhere.com/fdp-amts-gtfs-static/stops, retrieving stops data and
demonstrating that the AMT Transport Operator TEADAL node was working as expected.

Finally, the FDP description was made available on the Catalog at
https://kcong.cefriel.com:8087/dashboard/assets/Federated%20data%20product/AMTS%20I
ntegrated%20Mobility%20FDP.

Table 2 reports the trial configuration as described above.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 36 of 39

Pilot #2 Mobility Federated Access Point

Node location POLIMI VM

TEADAL.Node clone https://gitlab.teadal.ubiwhere.com/teadal-pilots/mobility-pilot

Organisation Transport Operator: AMTS

Dataset(s) loaded Transport static data in GTFS format

Datasets description on Data Catalog GTFS Open Data From AMTS Catania
https://kcong.cefriel.com:8087/assets/Dataset/GTFS%20Open%20data%20from%
20AMTS%20Catania
AMTS Real Time Trips Data
https://kcong.cefriel.com:8087/assets/Dataset/AMTS%20real%20time%20trips%20
data
AMTS Real Time Bus Position Data
https://kcong.cefriel.com:8087/assets/Dataset/AMTS%20real%20time%20bus%20
position%20data

FDP REST API definition https://gitlab.teadal.ubiwhere.com/teadal-pilots/mobility-pilot/fdp-amts-gtfs-static/-
/blob/main/api/fdp-amts-gtfs-static.yaml

FDP source code on Gitlab NodeJS implementation https://gitlab.teadal.ubiwhere.com/teadal-pilots/mobility-
pilot/fdp-amts-gtfs-static

FDP URL NodeJS implementation https://gitlab.teadal.ubiwhere.com/teadal-pilots/mobility-
pilot/fdp-amts-gtfs-static

FDP Description on Data Catalog http://mobility.teadal.ubiwhere.com/fdp-amts-gtfs-static/stops

TABLE 2: MOBILITY FEDERATED ACCESS POINT TRIAL CONFIGURATION

6.3 PILOT #3 - SMART VITICULTURE DATA SHARING

The Smart Viticulture Data Sharing pilot experimented with the first deployment process with
a pipeline starting from the Git repository at https://gitlab.teadal.ubiwhere.com/teadal-
pilots/viticulture-pilot/smart-viticulture-teadal-node. The TEADAL node was deployed on a VM
provided by TERRAVIEW, featuring the Terraview Core data lake.

A first dataset was loaded on MinIO by means of MinIO Operator UI and MiniIO API. The
Aquaview dataset description was made available on the Central Data Catalog and can be
viewed at https://kcong.cefriel.com:8087/assets/Dataset/Aquaview%20Dataset.

An FDP was designed to retrieve soil moisture data; its OpenAPI specification is available at
https://gitlab.teadal.ubiwhere.com/teadal-pilots/viticulture-pilot/fdp-viticulture-moistures/-
/blob/main/smartviticulture_fdp.yaml.

The FDP, implemented in Python, was deployed and tested using the endpoint at
http://20.4.3.245/fdp-viticulture-moistures//measurement/soilmoisture/aois, retrieving soil
moisture data and demonstrating that the Terraview Core TEADAL node was working as
expected.

Finally, the FDP description was made available on the Catalog at
https://kcong.cefriel.com:8087/dashboard/assets/Federated%20data%20product/Aquaview%
20FDP.

Table 3 reports the trial configuration as described above.

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 37 of 39

Pilot #3 Smart Viticulture Data Sharing

Node location TERRAVIEW VM

TEADAL.Node clone
https://gitlab.teadal.ubiwhere.com/teadal-pilots/viticulture-pilot/smart-viticulture-
teadal-node

Organisation Terraview Core

Dataset(s) loaded Soil moisture data

Datasets description on Data Catalog https://kcong.cefriel.com:8087/assets/Dataset/Aquaview%20Dataset

FDP REST API definition https://gitlab.teadal.ubiwhere.com/teadal-pilots/viticulture-pilot/fdp-viticulture-
moistures/-/blob/main/smartviticulture_fdp.yaml

FDP source code on Gitlab https://gitlab.teadal.ubiwhere.com/teadal-pilots/viticulture-pilot/fdp-viticulture-
moistures/-/blob/main/teadal.py

FDP URL http://20.4.3.245/fdp-viticulture-moistures//measurement/soilmoisture/aois

FDP Description on Data Catalog https://kcong.cefriel.com:8087/dashboard/assets/Federated%20data%20product/A
quaview%20FDP

TABLE 3: SMART VITICULTURE DATA SHARING TRIAL CONFIGURATION

6.4 PILOT #4 - INDUSTRY 4.0 FAST KPI CALCULATION

The Industry 4.0 fast KPI calculation pilot experimented with the first deployment process with
a pipeline starting from the Git repository at https://gitlab.teadal.ubiwhere.com/teadal-
pilots/industry-pilot/industry-teadal-node. The TEADAL node was deployed on a VM provided
by POLIMI, featuring the ERT plant data lake.

A first dataset was loaded on MinIO by means of MinIO GUI. The ERT Plant dataset description
was made available on the Central Data Catalog and can be viewed at
https://kcong.cefriel.com:8087/assets/Dataset/ERT%20Czech%20Plant%20data.

An FDP was designed to retrieve plant data; its OpenAPI specification is available at
https://gitlab.teadal.ubiwhere.com/teadal-pilots/industry-pilot/fdp-czech-plant/-
/blob/main/api/fdp-czech-plant.yaml.

The FDP, implemented with NodeJS, was deployed and tested using the endpoint at
http://industry.teadal.ubiwhere.com/fdp-czech-plant/shipments.

http://industry.teadal.ubiwhere.com/shipments/customer/501220267, retrieving plant data and
demonstrating that the ERT Plant TEADAL node was working as expected.

Finally, the FDP description was made available on the Catalog at
https://kcong.cefriel.com:8087/dashboard/assets/Federated%20data%20product/Czech%20
plant%20data%20access%20FDP.

Table 4 reports the trial configuration as described above.

Pilot #4 Industry 4.0 fast KPI calculation

Node location POLIMI VM

TEADAL.Node clone https://gitlab.teadal.ubiwhere.com/teadal-pilots/industry-pilot/industry-teadal-node

Organisation ERT Plant

Dataset(s) loaded Plant related data in CSV format

Datasets description on Data Catalog https://kcong.cefriel.com:8087/assets/Dataset/ERT%20Czech%20Plant%20data

FDP REST API definition https://gitlab.teadal.ubiwhere.com/teadal-pilots/industry-pilot/fdp-czech-plant/-
/blob/main/api/fdp-czech-plant.yaml

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 38 of 39

FDP source code on Gitlab https://gitlab.teadal.ubiwhere.com/teadal-pilots/industry-pilot/fdp-czech-plant/-
/tree/main/src/services

FDP URL http://industry.teadal.ubiwhere.com/fdp-czech-plant/shipments
http://industry.teadal.ubiwhere.com/shipments/customer/501220267

FDP Description on Data Catalog https://kcong.cefriel.com:8087/dashboard/assets/Federated%20data%20product/C
zech%20plant%20data%20access%20FDP

TABLE 4: INDUSTRY 4.0 FAST KPI CALCULATION TRIAL CONFIGURATION

6.5 PILOT #6 - REGIONAL PLANNING FOR ENVIRONMENTAL
SUSTAINABILITY

The Regional planning for environmental sustainability pilot experimented with the first
deployment process with a pipeline starting from the Git repository at
https://gitlab.teadal.ubiwhere.com/teadal-pilots/regional-planning-pilot. The TEADAL node
was deployed on a VM provided by BOX2M, featuring the BOX2M data lake.

No datasets have been loaded into the BOX2M data lake, as Energy Consumption and
Building Occupancy Data are retrieved from a BOX2M service in real-time. The BOX2M
dataset description was made available on the Central Data Catalog and can be viewed at
https://kcong.cefriel.com:8087/assets/Dataset/BOX2M%20energy%20consumption%20and
%20building%20occupancy%20data. The data catalog registers datasets belonging to
Regione Toscana, Servizio Idrologico Regione Toscana and ARPAT Regione Toscana as well.

An FDP was designed to retrieve BOX2M data; its OpenAPI specification is available at
https://gitlab.teadal.ubiwhere.com/teadal-pilots/regional-planning-pilot/box2m-fdp/-
/blob/main/draft-fdp-box2m.yaml.

The FDP was deployed and tested using the endpoint at http://teadal.box2m.io, retrieving plant
data and demonstrating that the BOX2M TEADAL node was working as expected.

Finally, the FDP description was made available on the Catalog at
https://kcong.cefriel.com:8087/dashboard/assets/Federated%20data%20product/BOX2M-
FDP.

Table 5 reports the trial configuration as described above.

Pilot #6 Regional planning for environmental sustainability

Node location BOX2M VM

TEADAL.Node clone https://gitlab.teadal.ubiwhere.com/teadal-pilots/regional-planning-pilot

Organisation BOX2M

Dataset(s) loaded BOX2M Energy Consumption and Building Occupancy Data

Datasets description on Data Catalog https://kcong.cefriel.com:8087/assets/Dataset/BOX2M%20energy%20consumption
%20and%20building%20occupancy%20data

FDP REST API definition https://gitlab.teadal.ubiwhere.com/teadal-pilots/regional-planning-pilot/box2m-fdp/-
/blob/main/draft-fdp-box2m.yaml

FDP source code on Gitlab https://gitlab.teadal.ubiwhere.com/teadal-pilots/regional-planning-pilot/box2m-fdp

FDP URL http://teadal.box2m.io

FDP Description on Data Catalog https://kcong.cefriel.com:8087/assets/Federated%20data%20product/BOX2M-FDP

TABLE 5: REGIONAL PLANNING FOR ENVIRONMENTAL SUSTAINABILITY TRIAL CONFIGURATION

D6.2: Integration report (V 1.0)

© 2022-2025 TEADAL Consortium Page 39 of 39

7 CONCLUSIONS

This deliverable has presented the implemented integration process to allow the different pilots to
integrate in their corresponding testbeds. The integration and deployment tools have been described
together with the CI/CD process.

The big effort spent in the implementation of the integration process has resulted in an automatization
of the deployment process that can be performed in a matter of minutes, producing a great improvement
over the actual manual deployment operated by our pilot partners at the moment.

Furthermore, the first pilot results following the TEADAL Node baseline deployment have been
presented.

