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EXECUTIVE SUMMARY 

This document presents the third and final iteration of the TEADAL Trust Plane, an 
evidence-based framework that lets organisations exchange data across federated lakes, 
edge to cloud, while guaranteeing verifiable identity, confidentiality, provenance and energy 
awareness. Building on the foundations laid in the first two releases, D5.3 consolidates the 
trust-enabling mechanism into a three-layer model: identity, computational  and behavioural 
trust. 

Key enhancements in this iteration include a blueprint for deploying single TEADAL nodes 
and scaling them into federations, an implementation of TrustOps workflow that now span 
development, attestation and runtime monitoring, and an expanded evidence model that links 
actions on data, software or infrastructure to verifiable proofs. These improvements give 
Data-Lake Operators a configurable menu of trust controls, allowing each federation to 
balance cost, audit-data volume and verification depth without losing interoperability.   

D5.3 also reports validation for specific scenarios based on pilot use cases and independent 
from the use cases scenarios, showing that the final Trust Plane meets the requirements 
defined in earlier deliverables. Measured latencies, gas costs and scalability benchmarks 
confirm that evidence production, anchoring and verification remain economical and 
performant at real-world scale. 

In summary, the third iteration demonstrates the TEADAL Trust Plane as a promising system 
prototype for trustworthy and energy-aware data sharing across decentralized environments. 
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1​ INTRODUCTION 

Data lakes collect a vast amount of data and are characterized by (i) potential distribution 
across various storage systems, (ii) diverse data formats (structured, semi-structured, 
unstructured), (iii) possibly absent or inconsistently formatted metadata, and (iv) typically 
dynamic and autonomously changing data [3]. They emerged as an approach to handle data 
originating from diverse sources, such as social networks, edge devices or enterprise 
applications. TEADAL ensures trusted, mediationless, verifiable, and energy-efficient data 
exchange in standalone as well as federated data lakes, particularly those deployed across 
the computing continuum. Its architecture builds around the concept of data mesh, 
augmented with stretchable and federated data products. To this end, established tools and 
data products ensure a seamless integration of TEADAL tools across heterogeneous 
environments. 

Trust can be defined in many ways. In the context of software systems, it describes a 
complex interplay of beliefs, expectations, and reliability of systems, in particular the reliance 
on a software's ability to meet specified requirements, even amid uncertainty. In TEADAL and 
in the context of this deliverable, we characterize trust through three foundational layers: 
identity trust, which confirms the authenticity of entities; computational trust, which 
guarantees the integrity and confidentiality of computations; and behavioral trust, which 
assesses trustworthiness based on past actions and observed behavior. The data exchange 
process typically involves multiple parties. In this context, trust must be enabled across 
different organizations, across multiple networks or different device boundaries. The involved 
parties need trust that a data exchange is performed according to predefined terms. In 
distributed and decentralized data exchange procedures, applying federated data products 
on top of a data mesh architecture alone is not enough to ensure trustworthiness. 

In TEADAL, the Trust Plane has been proposed to allow all parties involved in a data 
exchange to verify that a piece of software that has performed a particular operation behaves 
as expected. Evidence serves as a fundamental pillar for trust within TEADAL, emphasizing 
its need for variety, veracity, and ubiquitous collection. Moreover, the authenticity of the 
collected evidence is strengthened by ensuring authentication and integrity in the evidence. 
While verifiability of evidence through verifiable credentials facilitates trust in certain claims, 
authorization governs access rights and distribution enhances security and reliability 
guarantees. A key advancement in this regard is the generation and collection of verifiable 
evidence throughout the TEADAL infrastructure. 

This document reports on the third iteration of the TEADAL evidence-based trust framework 
for federated data exchange known as the TEADAL Trust Plane. Building on the work of the 
first and second iteration [1, 2], in the third iteration we focussed on validating and 
demonstrating the TEADAL Trust Plane when having a lack of trust, which hinders data 
exchange in distributed, decentralised environments such as federated data lakes. We have 
further investigated, developed and finalized the mechanisms necessary for parties wanting 
to exchange data to gain confidence that data are stored, handled and exchanged. In the 
following we provide an overview of these mechanisms and how they fit into the Trust Plane 
architecture, whereas the remainder of the document delves into the details. Based on these 
results, we performed a cost and energy evaluation of different designs of the trustworthy 
infrastructure to guide adopters of the TEADAL technology. Moreover, we validated the 
trustworthy infrastructure in use case dependent and use case independent scenarios. 
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2​ OVERVIEW 

In the first iteration of TEADAL, we introduced trust models and evidence that we are 
collecting to enable all stakeholders to gain trust in the correct exchange of data. We focused 
on the collection of runtime evidence, generated through the execution of FDPs and the 
storage and distribution of this evidence, e.g., either anchored in a private blockchain or on a 
public one.  In the second iteration, we focused on extending this evidence, by showcasing 
how we can authenticate different stakeholders through decentralized identifies and how this 
evidence can be aggregated and verified continuously by utilizing privacy-preserving 
infrastructure, such as trusted execution environments (TEEs), secure multi-party 
computation (MPC), and zero-knowledge proofs (ZKP). In this third and last iteration of 
TEADAL, we conducted a final refinement and evolution of our evidence-based trustworthy 
architecture, that for example takes into account federation-specific interactions. Towards this 
end, we describe in this section the general requirements that we want to achieve for the 
Teadal Trust Plane in terms of trustworthiness, derived from the pilot cases specified in D2.3 
[7]. 

A.​ GENERAL TRUSTWORTHINESS REQUIREMENTS 

i.​Track and monitor data usage 

Trust requires comprehensive tracking and monitoring of data usage. This is achieved by 
recording evidence of data access, processing, and manipulation. Therefore, auditable 
records are needed that show how data is stored, accessed, and used, enabling federation 
members and third parties to review these activities. The record is essential for preventing 
unauthorized actions and establishing accountability. To ensure transparency of data access 
across various system levels and allow entities to understand the flow and usage of data, it 
should be accompanied by a mechanism that allows to determine who accessed or 
requested data. Additionally, data management requires definition and enforcement of 
policies. Tracking and monitoring ensures that data access complies to established policies, 
by facilitating the verification of adherence. From a data owner's perspective, an FDP should 
provide an interface for managing data sharing consent policies. From an external user's 
perspective, there must be a way to access data they have been granted. 

ii.​Ensure privacy and confidentiality 

To eliminate reliance on subjective or unverifiable trust, cryptographic means for technical 
realization ensure that data-sharing and processing comply with privacy guarantees. 
Therefore, a variety of computation methods, including privacy-preserving mechanisms, 
should be provided for different datasets. Furthermore, technical components, such as tools 
for anonymization, anonymity checks, and consent verification should facilitate 
privacy-compliant data access. To enforce data confidentiality according to access rules, the 
solution must implement policies, thereby preventing unauthorized access to raw data. It 
should define the level of confidentiality of data, KPIs, and reports. Access to confidential 
data must be prohibited for unauthorized users. Data aggregation must have a minimum 
threshold to prevent analysis on small datasets. Additionally, each entity should be able to 
restrict data sharing with other entities. To comply with privacy regulations, it is required to 
only allow sharing of data based on provided consent, verifying consent information and its 
relation to sensitive information. This should also support compliance with privacy regulations 
by representing consent for access control and implementing policies based on data to 
enable compliant access. Data owners must be able to control the use of their data for 
analytics purposes through an opt-in consent mechanism, with consent stored in a database. 
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iii.​Establish confidence in data management and processing 

To foster the confidence in data usage, tools and mechanisms are needed to define and 
enforce data sharing policies. This ensures that data is accessed and shared in a controlled 
manner and supports maintaining compliance with regulatory frameworks. Clear and 
comprehensive policies should be established. These policies must define the permissions 
for copying and storing data. The architecture should be configured to ensure data delivery 
aligning with agreed-upon terms. When dealing with federated data systems that incorporate 
components hosted on public infrastructure, specific policy considerations must be 
addressed. Access rights, including read, use, edit, and forward permissions, must be 
defined for specific data sets, Key Performance Indicators (KPIs), and reports. Data 
movement policies should be tailored to individual use cases, defining the type of analysis, 
the data involved, and the anticipated results. The system must implement data lifecycle 
management, encompassing data retention, overall management, and data sharing policies.  
The necessary technical infrastructure is  required to enforce these policies and ensure 
secure data handling. Data processing and storage must occur within designated, controlled 
infrastructure. Different computational methods should be made available. Technical 
components facilitating privacy-compliant data access, such as tools for anonymization, 
anonymity verification, and consent validation, are needed. Data sanitization methods, such 
as feedback mechanisms for data owners, should be provided. Data sanitization should be 
considered, where implementation details are tailored to each pilot. Finally, the security of 
data access during data exchange must be ensured. 

© 2022-2025 TEADAL Consortium​ Page 10 of 49 



D5.3 Trustworthy data lakes federation third release report 

2.​ TRUSTWORTHY ARCHITECTURE VIEW 

TRUSTWORTHY ARCHITECTURE 

In the previous deliverable 5.2 [2], we described how different attestation mechanisms enable 
stakeholders to gain trust in TEADAL and the data-sharing process. In this iteration, we focus 
on component-specific descriptions and interactions that make up the trustworthy 
architecture of TEADAL. 

TEADAL leverages established data mesh architectures but augments them with the notion 
of a federated data product which can be stretched across data lakes, thus ensuring 
seamless integration of tools and data products across heterogeneous environments in the 
computing continuum. However, in practice federated data products alone are not enough to 
effectively enable distributed, decentralized data exchange: the parties involved in the 
exchange process need to trust the process is carried out according to stipulated terms. 

In the age of big data, safeguarding the integrity, confidentiality, and privacy of information is 
critically important. Traditional data pipelines, which handle the collection, processing, and 
analysis of vast amounts of data, often struggle with security and privacy issues. These 
challenges are particularly pronounced when it comes to distributing or scheduling tasks 
across various computational environments. 

With the integration of advanced technologies, Privacy-Preserving Data Pipelines can 
maintain the highest standards of data security and privacy, even in complex and distributed 
computational environments. The following sections describe the first investigative efforts of 
integrating such PETs into pipeline workflow engines, both from an architectural and 
trust-modelling perspective and from a prototyping stance. The maturity of the work 
developed here is mainly dependent on the advancements of the baseline technologies and 
practical frameworks deployed. 

  

FIGURE 1: TRUSTWORTHINESS LAYERS. 

 

As described in Figure 1, we characterize the foundational three layers that underpin trust in 
TEADAL: identity trust, which confirms the authenticity of entities; computational trust, which 
guarantees the integrity and confidentiality of computations; and behavioral trust, which 
assesses trustworthiness based on past actions and observed behavior. 
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FIGURE 2: TEADAL TRUST PLANE OVERVIEW. 

Figure 2 shows how the different tools and components of the TEADAL Trust Plane establish 
trust across different layers of the stack. The Business Layer defines the three trust 
capabilities of identity trust, computational trust and behavior trust. The Application Layer 
houses specific tools and components of the Trust Plane, whereas the Technology Layer 
describes the enabling technologies for these tools and components: For Identity trust, it 
includes Passkeys, Smart Contracts for DIDs and Blockchain State Anchoring. For 
computational trust, it refers to zkML, Sharemind MPC, TEE Pipeline, and ZK-SecreC. 
Behavior trust comprises Advocate, TNS/Federation Smart Contract, TrustOps, and the 
Catalog Transaction Observer. 

i.​Identity trust 

Identity trust refers to the assurance that an entity is who they claim to be. It indicates that 
actions can be clearly attributed to the responsible parties. Identities should be established in 
an immutable and verifiable manner. An identity can be associated with the TEADAL data 
lake roles, such as the Data Lake Operator (DLO), FDP Designer, FDP Developer, and the 
FDP Consumer, but also the FDP itself, or any piece of software.  

In TEADAL, we consider multiple ways to represent an identity: Either by using Decentralized 
Identifiers (DIDs), shared and federated namespaces, or through a variety of methods to 
automatically and indiscriminately collect evidence using Advocate and the Trust Plane 
Catalogue component integration. DIDs provide cryptographically verifiable identities without 
relying on a central authority. Shared and federated namespaces enable interoperability and 
consistent identity management. 

Confirming or denying that a claimed identity is correct is achieved in multiple ways. The 
DLO, FDP Designer, FDP Developer, and the FDP Consumer, but also the FDP can be 
represented by a DID. Their identities are verifiable by resolving the associated DID 
document, which contains a description of the verification method. Typically, this provides 
means to verify ownership of a given keypair. For software, identity trust can be established 
by leveraging reproducible and verifiable infrastructure. 

ii.​Computational trust 
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In addition to identity trust, we must be able to guarantee trust in computation. This refers to 
the mechanisms that ensure the integrity and confidentiality of data and computations. The 
core objective is to establish verifiable security guarantees that prevent unauthorized access, 
tampering, or data leakage, thereby fostering confidence in the data-sharing processes in 
TEADAL. 

To achieve this, different Privacy-Enhancing Technologies (PETs) can be employed. Trusted 
Execution Environments (TEEs) create a secure enclave within a processor. This ensures 
that sensitive data is processed in isolation from the rest of the system, protecting it from 
unauthorized access, even if the operating system or other applications are compromised. 
Secure Multi-Party Computation (MPC) enables multiple parties to collaboratively compute 
functions over their respective inputs while keeping those inputs private. This allows for 
confidential data processing without exposing sensitive information to any of the involved 
parties. Zero-Knowledge Proofs (ZKP) provide a way for one party to prove the truth of a 
statement to another without revealing any additional information beyond the statement’s 
validity, enhancing verification without compromising privacy.  Additionally, we integrate 
Synthetic Data Generation methods to produce anonymized datasets that retain key 
statistical properties, enabling secure testing and analysis without exposing sensitive details. 

iii.​Behavioral trust 

Behavioral trust is trust based on an entity's observed actions and history. It relies on the 
analysis of past behavior to predict future trustworthiness. Behavioral trust mechanisms 
evaluate a variety of factors, including policy compliance, consistency of actions, or historical 
interactions. These assessments help determine whether an entity can be trusted to operate 
within a given system.  

Behavioral trust goes beyond a static evaluation and takes into account data and interactions 
in real time: An entity that demonstrates a stable pattern of trustworthy behavior builds trust 
within the system. If an entity shows unexpected behavior, its trustworthiness is adjusted 
accordingly. In TEADAL, behavioral trust is typically related to reputation-based mechanisms 
that aggregate the historical behavior of entities and make this information available to 
others. This reputation is determined by the long-term track record of an entity's actions 
within the system. 

B.​ COMPONENTS DESCRIPTION AND FUNCTIONS 

This section provides an overview of the components and functionalities of the TEADAL 
Trust Plane by focusing in particular on the three trust layers of identity, computational and 
behavioral trust. Therefore we explore blockchain state anchoring, Decentralized Identifiers 
and Passkeys, and privacy-preserving technologies like Zero-Knowledge Machine Learning, 
Multi-Party Computation, and Trusted Execution Environments. Furthermore, we examine 
the role of Advocate, the Teadal Name Service, and Federation Smart Contracts in ensuring 
verifiable operations and fostering behavioral trust. 

i.​Blockchain State Anchoring 

To improve private blockchain integrity and immutability we have implemented a protocol that 
periodically anchors the private blockchain state to public blockchains, taking advantage of 
the security features of larger, decentralized networks. 
The proposed protocol involves periodically creating a snapshot of the private blockchain's 
state, represented by a cryptographic hash, at specified intervals. This snapshot is then 
recorded onto a public blockchain, ensuring a tamper-resistant record of the private 
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blockchain's state at various points in time. In case of suspected tampering, participants can 
verify the private blockchain's integrity by comparing its current state with the previously 
anchored snapshots on the public blockchain. 

Any TEADAL component that use a blockchain, could use or deploy smart contracts on a 
private permissioned blockchain, increasing: 

●​ Security: only approved actors can write on the permissioned blockchain 
●​ Privacy: the information stored on the blockchain are not exposed publicly 
●​ Throughput: usually, a private permissioned blockchain can handle more transaction 

per seconds than a public ones 

Also, the component doesn't have to handle the cryptocurrency costs, as the private 
blockchain can handle gas free transactions or fund with private token the component. 
Private blockchain could: 

●​ Do not expose endpoints directly and/or gain write rights only to selected 
actors/components and use a gas free configuration, meaning that only privileged 
actors/components that own a privileged account can participate in the network 
without worrying about wallet liquidity. 

●​ Use a private token, funding only certains actors/components and asking for a fee for 
each transaction, meaning that only funded accounts can participate in the network. 

Private blockchain lacks of security, as the number of the validators are not high as public 
networks, but having a periodic snapshot anchored to one or multiple public networks, 
increase the security, as the snapshot is a cryptographic hash that any participant (usually 
validators) can verify, and if one validator is malicious (E.G. it tries to anchor a different state 
and diverge the private blockchain history) it can be slashed or even excluded as a validator. 

ii.​Passkeys  

Passkeys are cryptographic credentials based on a public-private key pair. The private key is 
securely stored by the user, while the public key is used for verifying digital signatures. 
Thanks to their cryptographic nature, passkeys eliminate risks associated with weak or 
compromised passwords.  

Passkeys can be implemented using various signature curves, depending on security needs 
and the technical requirements of the environment. 

In EVM-compatible environments, the secp256K1 elliptic curve is commonly used for 
passkeys. This curve is widely adopted in the blockchain ecosystem. 

Passkey registration involves generating a pair of cryptographic keys: a private key (securely 
stored on the device) and a public key (sent to the server). The server sends a unique 
challenge, which the user signs with their private key to verify their identity. The public key, 
along with metadata, is stored on the server for future authentications. 

Benefits of Public Key and DID Association:  

●​ Interoperability: DIDs can be used across multiple platforms, enabling portable and 
universal identities. This simplifies and scales identity management.  

●​ DID Updates: In case of private key compromise, the DID can be updated with a new 
public key, ensuring continuity of identity.  
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●​ Advanced Features: DIDs support the integration of verifiable credentials, allowing 
the addition of metadata or attestations linked to the user's identity without 
compromising privacy  

The verification workflow leverages asymmetric cryptography and blockchain to ensure 
secure, decentralized, and passwordless authentication. In this system, the user owns a 
private key associated with a unique DID that is registered on the blockchain. The login 
process is based on a challenge signed with the user's private key, verified through the 
corresponding public key. The server can then verify on the blockchain to confirm the validity 
of the associated DID.  
If the signature is valid and the DID matches, access is granted. Otherwise, access is denied, 
ensuring a secure, decentralized, and passwordless process. 

 

iii.​ Smart Contract for DIDs 

Decentralized Identifiers (DIDs) represent an emerging paradigm in the field of digital identity. 
Based on decentralized technologies such as blockchain, DIDs ensure security, integrity, and 
interoperability across a wide range of applications.  

Their functionality at the Smart Contract level enables autonomous and verifiable 
management of digital identities, eliminating reliance on centralized authorities. Thanks to 
advanced cryptographic mechanisms, DIDs offer a scalable and censorship-resistant model, 
fostering a more secure and reliable ecosystem. 

The use of DIDs allows users to maintain full control over their credentials, reducing the risk 
of identity theft and third-party abuses. Furthermore, their interoperability facilitates 
integration with various platforms and systems, promoting a global and decentralized digital 
identity. 
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A Decentralized Identifier (DID) system is designed to ensure security, autonomy, and 
verifiability in digital identity management. Its architecture leverages blockchain technology to 
provide a trustless, tamper-resistant framework where users maintain control over their 
identities. The following sections explore the key aspects that make this system robust and 
reliable. 

The DID Registry is a Smart Contract that acts as a decentralized registry to manage 
operations on DIDs. Thanks to the blockchain, the registry ensures:  

●​ Immutability: Recorded information cannot be retroactively altered.  
●​ Transparency: Every operation is visible on the blockchain.  

The lifecycle of a DID is divided into four main stages:  

●​ Creation: Generation of a public/private key pair and registration of the DID on the 
blockchain. This operation is performed by the DID Issuer, who associates a public 
key with the registered DID.  

●​ Resolution: Retrieval of the DID Document through a resolver. A resolver interprets 
the DID and returns the associated document.  

●​ Update: Modification of the information. This operation allows, for example, the 
updating of public keys or changing the associated services.  

●​ Revocation: Disabling the DID or removing the information from the registry, ensuring 
it can no longer be used.  

The provided Smart Contract implements all the key functionalities required to manage DIDs. 
Below, the main sections of the code and their respective concepts are analyzed. The 
constructor of the Smart Contract is used to initialize the decentralized identity registry. 
Example: 

constructor(string memory _identifier) { ​
​ _scDidPrefix = string( ​
    ​abi.encodePacked( ​
        ​ DidUtils.DID_PREFIX, ​
        ​ Strings.addressToString(address(this)), ​
        ​ ':' ​
    ​) ​
​ ); ​
 ​
​ string memory selector = Strings.bytesToHexWithoutPrefix( ​
    ​abi.encodeWithSelector( ​
        ​ DecentralizedID.validateDecentralizedId.selector ​
    ​) ​
​ ); ​
 ​
​ _verificationMethodDid = string( ​
    ​abi.encodePacked(_scDidPrefix, selector) ​
​ ); ​
 ​
​ _providerId = _generateId(_identifier); ​
​ string memory did = string( ​
    ​abi.encodePacked(_scDidPrefix, _providerId) ​
​ ); ​
 ​
​ _provider = Identity({ ​
    ​owner: msg.sender, ​
    ​did: did, ​
    ​identifier: _identifier ​
​ }); ​
}  

 

This constructor:  
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1.​ Sets the DID prefix based on the Smart Contract address 
2.​ Generates a DID verification method 
3.​ Creates an initial identity for the provider (the contract deployer) 

The addIdentity method allows adding a new decentralized identity. This is the starting point 
for issuing a DID:  

function addIdentity(string memory _identifier, address _account) external onlyOwner {   
​ require(_account != address(0x0), DidUtils.INVALID_ADDRESS);   
   
​ bytes memory checkExist = bytes(_owners[_account]);   
​ require(checkExist.length == 0, DidUtils.DID_ALREADY_EXISTS);   
   
​ string memory id = _generateId(_identifier);   
​ string memory did = string(abi.encodePacked(_scDidPrefix, id));   
​ bytes32 bytesId = keccak256(abi.encodePacked(id));   
   
​ _entities[bytesId] = Identity({   
    ​owner: _account,   
    ​did: did,   
    ​identifier: _identifier   
​ });   
   
​ _owners[_account] = id;   
​ emit NewIDentity(did, _identifier, block.timestamp);   
}  
This method performs the following operations:  

3.​ Verifies that the account does not already have an associated DID.  
4.​ Generates a new unique identifier using _generateId.  
5.​ Registers the identity in the _entities mapping and associates the DID with the 

provided account.  

It emits a NewIDentity event to notify the creation of the new DID.  

The Smart Contract includes functionality to track the ownership history of decentralized 
identities. This feature is implemented through the _ownershipHistory mapping.  

The _ownershipHistory mapping uses a two-level structure:  

mapping(bytes32 => mapping(address => uint256)) private _ownershipHistory;  

●​ The main key is a hash of the DID.  
●​ The secondary key is the owner’s address.  
●​ The stored value is a timestamp indicating when the owner transferred or lost the 

identity.  

When an identity is transferred, the contract records the change in the history:  

  function updateOwnerIdentity(  
​ string calldata _did,  
​ address _new,  
​ address _current  
  ) external override onlyOwner {  
​ string memory did = getDecentralizedId(_current);  
​ require(_new != address(0x0), DidUtils.INVALID_ADDRESS);  
​ require(Strings.equal(did, _did), DidUtils.INVALID_DID);  
   
​ (string memory scDidPrefix, string memory id) = DidUtils.splitDid(  
  ​ _did  
​ );  
​ require(  
  ​ Strings.equal(_scDidPrefix, scDidPrefix),  
  ​ DidUtils.INVALID_DID  
​ );  
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​ bytes memory checkExistOld = bytes(_owners[_current]);  
​ require(checkExistOld.length != 0, DidUtils.ADDRESS_NOT_FOUND);  
   
​ bytes memory checkExistNew = bytes(_owners[_new]);  
​ require(checkExistNew.length == 0, DidUtils.DID_ALREADY_EXISTS);  
   
​ bytes32 bytesId = keccak256(abi.encodePacked(id));  
​ require(  
  ​ _entities[bytesId].owner != address(0x0),  
  ​ DidUtils.DID_NOT_FOUND  
​ );  
   
​ delete _owners[_current];  
   
​ _entities[bytesId].owner = _new;  
​ _owners[_new] = id;  
   
​ _ownershipHistory[bytesId][_current] = block.timestamp;  
  }  

 

It is possible to verify if an account was a past owner of a DID by comparing the 
_ownershipHistory mapping with the required address and timestamp.  

The ownership history enhances the transparency, security, and reliability of property and 
credential management systems.  

●​ Audit and Verification: Enables tracking of all property changes, which is useful for 
corporate or security audits 

●​ Dispute Resilience: Allows the legitimacy of past property ownership to be 
demonstrated 

●​ Credential Persistence: Verifiable Credentials remain valid even if public keys are 
updated. The signature associated with the old public key ensures that no previously 
issued credential becomes invalid, maintaining the system's reliability and 
consistency.  

To ensure that the issuance, update, or revocation of identities is approved by multiple 
entities, a multisig (multi-signature) wallet can be integrated. A multisig wallet is a type of 
wallet that requires the consent of multiple private key holders to authorize a transaction, 
thereby distributing control and reducing the risk of unilateral actions. This can be 
implemented by adding checks requiring the approval of a quorum of administrators.  

Example function for multisig approvals:  

address[] public owners;  

mapping(address => bool) public isOwner;  

uint public numConfirmationsRequired;  

  
struct Transaction {  

​ address to;  

​ uint value;  

​ bytes data;  

​ bool executed;  

​ uint numConfirmations;  

}  
modifier onlyOwner() {  

​ require(isOwner[msg.sender], "not owner");  

​ _;  
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}  
function submitTransaction(address _to, uint _value, bytes memory _data) public onlyOwner {  

​ uint txIndex = transactions.length;  

  
​ transactions.push(Transaction({  

    ​to: _to,  

    ​value: _value,  

    ​data: _data,  

    ​executed: false,  

    ​numConfirmations: 0  

​ }));  

  
​ emit SubmitTransaction(msg.sender, txIndex, _to, _value, _data);  

}  

  
function confirmTransaction(uint _txIndex) public onlyOwner txExists(_txIndex) 

notExecuted(_txIndex) notConfirmed(_txIndex) {  

​ Transaction storage transaction = transactions[_txIndex];  

​ transaction.numConfirmations += 1;  

​ isConfirmed[_txIndex][msg.sender] = true;  

  
​ emit ConfirmTransaction(msg.sender, _txIndex);  

}  
function executeTransaction(uint _txIndex) public onlyOwner txExists(_txIndex) 

notExecuted(_txIndex) {  

​ Transaction storage transaction = transactions[_txIndex];  

  
​ require(transaction.numConfirmations >= numConfirmationsRequired, "cannot execute tx");  

  
​ transaction.executed = true;  

  
​ (bool success, ) = transaction.to.call{value: transaction.value}(transaction.data);  

​ require(success, "tx failed");  

  
​ emit ExecuteTransaction(msg.sender, _txIndex);  

}  

With this structure:  

●​ Administrators can approve actions such as DID creation or revocation.  
●​ An action is executed only when the number of approvals exceeds the defined 

quorum.  

i.​Zero-Knowledge Machine Learning 

Zero-Knowledge Machine Learning (ZKML) is a cryptographic approach that enables the 
verification of machine learning model inferences on blockchain networks without exposing 
the underlying data or computations. This innovative technology facilitates secure, 
privacy-preserving, and transparent use of AI models in decentralized applications, ensuring 
the integrity and trustworthiness of the results. 
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FIGURE 4: ZERO-KNOWLEDGE MACHINE LEARNING (ZKML) OVERVIEW. 

Easy Zero-Knowledge Inference (EZKL) is a powerful library designed to simplify inference 
verification using Zero-Knowledge Proofs (ZKPs) and blockchain technology. It enables 
developers to integrate AI model verifications into blockchain ecosystems with minimal 
complexity.  

The EZKL library combine the following elements: 

●​ An AI Machine Learning Model: the trained model to be used for inference.  
●​ A Circuit Compatible with zk-SNARKs: the arithmetic circuit that represents the 

model's computation steps in a zero-knowledge format. 
●​ An EVM-Compatible Blockchain: the decentralized network where the verifier can 

trustlessly validate the inference proof. 

ZKML could provide significant advantages. Integrating it with a TEADAL AI model we can 
achieve: 

●​ Enhance data security: input data does not need to be shared to verify the inference 
process 

●​ Introduce trustlessness: decentralized inference verification through smart contract 
can be validated by any third party without relying on a central authority 

The steps to generate a verifiable zk-proof for each inference process can be automated, 
after having identified the target model, the steps are: 
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1.​ Settings generation: 
a.​ The EZKL library generates a settings file containing information about the 

model and the desired visibility of input/output parameters. 
b.​ Parameters can be set as public, hashed, or private. For privacy-preserving 

purposes, input parameters are typically hashed or private. 
2.​ Circuit Compilation: 

a.​ The neural network is compiled into an arithmetic circuit compatible with 
zk-SNARK proof systems. 

b.​ Each computational step of the network is translated into polynomial 
equations that describe the relationships between inputs, intermediate 
computations, and outputs. 

3.​ Environment setup: 
a.​ Since the EZKL library employs ZK-SNARK proof construction techniques, the 

proof environment requires a setup ceremony. This can be securely 
accomplished using the SRS (Structured Reference String) from the Perpetual 
Power of Tau [6], a trusted setup protocol. 

4.​ Setup and keys generation: 
a.​ EZKL executes the necessary trusted setup and generates the Prover key, 

used to create zk-proofs for inference processes, and the Verifier key, used to 
validate these proofs. 

Then, with EZKL, we will be able to generate the Verifier Smart Contract, where the Verifier 
key is embedded in the contract itself. 

This smart contract could be deployed on a TEADAL permissioned blockchain or any EVM 
compatible network. 

Once deployed, anytime an inference process is done using the same AI model, a zk-proof of 
this process can be generated by EZKL and this proof can be verified by anyone using the 
already deployed smart contract. 

ii.​Advocate  

Advocate collects, combines, and stores evidence from multiple sources in the TEADAL 
ecosystem. By ensuring that all claims are substantiated with telemetry data, Advocate 
provides an overview of the data lake's operations. This holistic approach allows for more 
effective monitoring, auditing, and compliance, helping organizations meet regulatory 
requirements and maintain trust with consumers of FDPs. These claims range from those 
representing service deployments within a cluster, e.g., FDP creation. In Catalogue-level, 
claims are a report about consumer interactions, e.g., when creating a contract for 
consuming an FDP. These claims are stored along with tracing data from observation tools 
that substantiate them. Observation tools provide tracing logs and metrics, generating 
Platform-level evidence that Advocate collects, combines, and immutably stores to justify 
claims. Tracing logs are also used to provide evidence about data exchanges between 
services. Moreover, we aim to create reliable and trustworthy monitoring sources by enabling 
mTLS and signed deployment images for all critical infrastructure services. 

The architecture of Advocate is designed to handle a diverse range of evidence sources and 
types, e.g., Jaeger and Kubernetes. By supporting various evidence sources from different 
providers and integrating seamlessly with existing infrastructure of data lakes, Advocate 
ensures that the integrity of evidence is maintained across the TEADAL environment and 
across all data lakes. The use of private keys for signing evidence adds an additional layer of 
authenticity, making it difficult for unauthorised parties to alter or forge claims alongside using 
a blockchain for tamper proof record keeping. 

© 2022-2025 TEADAL Consortium​ Page 21 of 49 



D5.3 Trustworthy data lakes federation third release report 

In a federated environment like TEADAL, where every data lake has its own instance of 
Advocate running, we need to aggregate all the evidence and verifications from different 
instances across the data lakes. To achieve this, each Advocate instance in each data lake 
acts as a gateway and provides evidence to other data lakes. This way other Advocate 
instances can discover, verify and enrich observations and combine evidence to build up a 
comprehensive picture of FDP, sFDP data exchanges. Moreover, since Advocate uses the 
InterPlanetary File System (IPFS) as shared storage, and a public (or accessible) blockchain 
with smart contracts, other third-party implementations can interact and use the evidence 
created by Advocate across the TEADAL data lakes if needed. 

As part of the trustworthy architecture of TEADAL, Advocate plays a crucial role in ensuring 
identity trust, computational trust, and behavioral trust. To uphold identity trust, Advocate 
assigns and manages public/private keys to establish identities of TEADAL components, 
such as FDPs. In fulfilling computational trust, Advocate guarantees that all interactions 
within TEADAL remain transparent and tamper-proof. By maintaining immutable storage for 
logs and traces, Advocate ensures that every action can be traced back to its origin, securing 
data integrity and preventing malicious alterations. For behavioral trust, Advocate 
systematically collects and records claims at both the application and platform levels. By 
storing signed claims and validating them against predefined policies and regulations, 
Advocate ensures that actions within TEADAL comply with established rules. Furthermore, 
Advocate facilitates attestation by providing a transparent infrastructure where FDP policies 
and supporting evidence are stored, allowing data consumers and providers to verify 
compliance. The ability to trace DIDs through recorded evidence further strengthens 
confidence in the federation’s trust model. 

Figure 5 illustrates the claim verification process between two Advocate instances, Advocate 
A and Advocate B, which can be divided into two distinct phases: Key Generation and Claim 
Verification: 

 

FIGURE 5: CLAIM VERIFICATION BETWEEN TWO ADVOCATE INSTANCES. 

The key generation phase consists of creating and registering the necessary cryptographic 
material for later claim verification. In this phase, Advocate B first generates a public/private 
key pair and registers the public key in the Federation Contract. Following this registration, 
Advocate A's Key Fetcher Service retrieves this public key from the Federation Contract and 
stores it for later use. Based on that, in the Claim Verification phase, a signed claim is 
exchanged and verified. It is assumed that Advocate B has signed a claim using its 
previously registered key pair. This signed claim is then sent to Advocate A. Upon receipt, 
Advocate A verifies the claim by retrieving the corresponding public key using its Key Fetcher 
service. If the cryptographic verification is successful, the service claims associated with the 
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verified claim are stored in the IPFS, and a record of the claim is registered in Advocate A's 
Document Store smart contract. 

iii.​TNS and Federation Smart Contract 

The Teadal Name Service (TNS) and Federation Smart Contracts represent two technologies 
to build trust in identities within decentralized systems like TEADAL. They utilize smart 
contracts running on a distributed ledger technology (DLT) to provide enhancements for 
evidence generated by Advocate. 

The TNS serves as a decentralized naming system utilizing core functionalities of the 
Ethereum Name Service (ENS) smart contracts. Analogously to a classical Domain Name 
Service, the TNS records federation members by providing an abstraction layer to associate 
human-readable names with blockchain accounts or resources. Moreover, TNS creates 
resolvable names for both Federated Data Products (FDPs) and Shared Federated Data 
Products (SFDPs), streamlining resource discovery and access within the ecosystem. This 
enhances the usability and accessibility of the TEADAL Federated Data Lakes for all 
federation members. 

The Federation Smart Contracts manage governance and operations of the federation by 
defining an initial set of members and establishing DLT-backed protocols for registering new 
members in a collaborative manner. They provide mechanisms for federation members to 
register domains and services in the TNS and enable them to register public keys, facilitating 
trustworthy and secure verification among participants.  Any modifications to the federation 
are logged in an immutable manner, by emitting events in the smart contract. The events are 
related to membership management. They encompass events such as MemberAdded, 
MemberApproved, and NewApprovalCount. This provides a transparent and verifiable history 
of federation governance. 

The TNS and Federation Smart Contracts extend Decentralized Identifiers (DIDs) to 
establish DLT-backed and self-sovereign digital identities, building a strong foundation for 
trustworthy digital identities in TEADAL. This framework is important for generating and 
verifying evidence within decentralized systems, supporting both day-to-day operations and 
building a foundation of trust and accountability. 

The ENS/Federation Smart Contracts provide decentralized mechanisms for facilitating 
interactions between federations. The TEADAL Name Service (TNS) serves as a 
decentralized naming system within the distributed ledger technology (DLT) where TEADAL 
operates, with more functionalities analogously to classical Domain Name Service to do 
records management at a federation members level. In conjunction with TNS, Federation 
Smart Contracts play a role in managing the governance and operations of the federation. 
Building on the previous iterations of TEADAL and the TEADAL Trust Plane, the 
ENS/federation smart contracts now enable interaction with multiple Advocate instances 
across federations.  

Figure 6 shows the interaction between two Advocate instances for validating changes to an 
sFDP using the Document Store Contract. The Document Store Contract serves as the 
single source of truth for registered claims: 
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FIGURE 6: SFDP UPDATE BETWEEN TWO ADVOCATE INSTANCES. 

Each step of the data pipeline is documented by Advocate by generating signed claims.  
Therefore, Advocate A first creates a new claim that includes data from an sFDP. This claim 
is stored in the IPFS, and a corresponding registration of the claim is recorded in Advocate 
A's Document Store smart contract. Upon successful registration, the sFDP is published to 
the DataLake. Next, Advocate B uses the sFDP and retrieves the associated claim using the 
Document Fetcher Service. It retrieves the previously recorded registration data from 
Advocate A's Document Store Smart Contract and initiates storage of the claim content 
retrieved from IPFS in a local database of Advocate B. 

To strengthen behavioral trust, the Federation Smart Contract incorporates a reputation and 
dispute resolution system. If conflicts arise, the smart contract logs challenges and enforces 
resolution mechanisms, ensuring fair and transparent outcomes. Reputations are recorded 
on-chain. Currently, they are defined by tracking disputes relating to a dataset. If an identity 
has multiple disputes assigned to it, its reputation is affected. 

iv.​Catalog transaction Observer  

The interactions between users and the Catalogue fall into two categories: browsing for 
assets (datasets, FDPs, SFDPs) and contributing to the catalogue itself. This last category of 
interactions is the target of the Transactions Observer implementation. The Catalogue can be 
configured to execute BPMN processes as a response to two main interactions: 

●​ lifecycle events (publishing, editing, deleting) related to assets descriptions 
●​ requests that a user can trigger related to a specific asset, like requesting access to 

an FDP or requesting to advertise an asset through a dataspace connector 

Inserting BPMN activities in the right parts of such processes allow immutability logging 
events to Advocate. 

In case of a lifecycle event, the following process represents an example of where to add 
such an activity 
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FIGURE 7: ADVOCATE LOGGING THROUGH BPMN SERVICE TASKS. 

 

In details, the activity is a Service Task that performs an API call directed to Advocate. An 
example of a lifecycle event sent to Advocate is listed below: 

 

FIGURE 8: PAYLOAD FOR LOGGING THE REGISTRATION OF A NEW DATASET. 

User requests are data structures in the Catalogue allowing a ticket-like system. Once a User 
request is created, its status is tracked in the Catalogue and the corresponding BPMN 
process is started. The last activity of the BPMN process will be a call to the Catalogue API 
signalling that the User request can be “closed” since it was correctly handled. The 
implementation of the event logging to Advocate follows what was described before, as 
shown in the process below that corresponds to the User request for asking the permission 
to use an FDP: 
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FIGURE 9: ADVOCATE LOGGING OF USER REQUESTS. 

In this case, the body of the message sent to Advocate will be like the example below: 

 

FIGURE 10: PAYLOAD FOR ADVOCATE LOGGING THROUGH BPMN SERVICE TASKS. 

v.​Sharemind MPC  

Sharemind MPC1 is a secure multi-party computation (MPC) framework that enables multiple 
parties to jointly compute functions over their private data without exposing the underlying 
inputs. Using secret sharing techniques, sensitive data is divided into multiple shares and 
distributed among non-colluding nodes. In our implementation, we use the SecreC 
language2, a high-level, domain-specific language for writing secure computation protocols, 
to define and execute these MPC protocols efficiently. These nodes then collaboratively 
perform computations on the shares and later reconstruct the final result, ensuring that no 
single party gains access to the complete dataset. This method provides robust privacy 
guarantees and complies with strict data protection standards. More details on MPC 
cryptographic mechanisms and Sharemind MPC tooling are in D5.2 [2]. 

Within TEADAL, Sharemind MPC is integrated into data pipelines to facilitate secure, 
collaborative data analysis and aggregation. The MPC runtime is deployed as an 
independent executable task, which can be orchestrated using Kubernetes to manage 
parallel execution across distributed nodes. Leveraging Kubernetes features such as 
scheduling and node affinity, MPC tasks are coordinated to perform distributed 
Privacy-Preserving Data Pipelines at scale. This integration not only enhances data 
confidentiality but also supports regulatory compliance and reinforces the trustworthiness of 
federated data processing operations. 

2 https://docs.sharemind.cyber.ee/sharemind-mpc/2023.09/development/secrec-tutorial.html  
1 https://sharemind.cyber.ee/sharemind-mpc/  
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The Sharemind MPC runtime serves as a potential type of Privacy-preserving Data Pipeline 
task for distributed and collaborative computations. Leveraging secret sharing techniques, it 
allows multiple parties to jointly compute functions over private data without revealing the 
underlying inputs. Deployed as containerized tasks orchestrated by Kubernetes, the 
Sharemind MPC runtime ensures synchronized execution across non-colluding nodes, 
enabling secure data aggregation and analysis. Moreover, its integration with TEADAL’s trust 
infrastructure—through evidence logging and auditing—enhances overall data privacy while 
supporting collaborative processing in federated environments. 

vi.​TEE Pipeline 

Trusted Execution Environments (TEEs) are hardware-based isolated areas within a 
processor that securely execute sensitive code and handle confidential data, even if the host 
operating system is compromised. By leveraging features such as memory encryption and 
secure boot, TEEs ensure data integrity and confidentiality during computation. As presented 
in D5.2 [2], TEEs like Intel SGX, Intel TDX, AMD SEV, and Arm TrustZone provide robust 
security guarantees that protect sensitive workloads from external tampering or unauthorized 
access. This technology enables applications to process private data securely by isolating 
critical operations from the rest of the system. 

TEE-based tasks can be seamlessly integrated into data pipelines and orchestrated using 
container orchestration platforms like Kubernetes. For instance, lightweight virtual machines 
provided by technologies such as Kata Containers and Confidential Containers enable the 
deployment of TEEs in containerized environments, ensuring that sensitive computations run 
within secure enclaves. These solutions support essential features such as remote 
attestation, key management, and secure image decryption, which are critical for verifying 
the integrity of the TEE and the workload it hosts. By combining these capabilities with 
Kubernetes' scheduling, node affinity, and resource management, we can orchestrate 
energy-efficient, Privacy-Preserving Data Pipelines that meet both security and operational 
requirements. 

Within TEADAL, Trusted Execution Environments (TEEs) provide an extra runtime 
mechanism for executing Privacy-preserving Data Pipeline tasks securely. By running 
sensitive computations inside hardware-isolated enclaves, TEEs ensure that data remains 
confidential even when operating on less trusted infrastructure. Integrated with Kubernetes 
through solutions like Kata Containers and Confidential Containers, TEE-based tasks can be 
dynamically scheduled based on resource availability and energy efficiency criteria. These 
secure runtime environments can also interact with TEADAL's identity management, 
observability, and evidence collection tools, reinforcing trust and ensuring that sensitive 
operations are verifiable and compliant with regulatory standards. A prior demonstration of 
TEE integration was detailed in D5.2 [2]. 

vii.​ZK-SecreC  

ZK-SecreC3 is a high-level, domain-specific language designed specifically for developing 
zero-knowledge proofs. Partially developed within the TEADAL project, it addresses the 
challenge of creating verifiable proofs while ensuring that sensitive data remains confidential. 
With a syntax reminiscent of modern languages like C++ or Rust, ZK-SecreC introduces an 
information flow type system that clearly delineates between public and private data. This 
design allows developers to write proof statements at a high level, while the language's 
compiler translates these into efficient low-level arithmetic circuits compatible with various ZK 
back-ends. Its rich library of reusable functions and gadgets further streamlines the 
development process, reducing complexity and enhancing reliability. 

3 https://github.com/zk-secrec  
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Practically, ZK-SecreC models zero-knowledge interactions by enabling a Prover to generate 
proofs that demonstrate data properties—such as integrity, identity authentication, and 
regulatory compliance—without revealing any underlying sensitive information. It compiles 
these high-level proofs into portable execution units that can run on a wide range of 
platforms, allowing both Provers and Verifiers to execute ZKP programs reliably across 
different devices and environments. This direct, cross-platform capability ensures that 
zero-knowledge protocols can be deployed in different TEADAL contexts and operations, 
providing a robust and practical tool for secure, verifiable data exchanges within the 
federated ecosystem. 

ZK-SecreC enforces trustworthy and verifiable programmability through a set of concrete 
language features. Its advanced information flow type system ensures strict separation 
between secret and public data, so that sensitive inputs remain isolated throughout the 
computation. The language offers built-in functions for operations like fixed-point arithmetic, 
efficient field-based hashing (using optimized algorithms such as Poseidon), and comparison 
operations, all of which aid in reducing circuit complexity and ensuring predictable 
performance. When compiled, ZK-SecreC generates intermediate representations such as 
SIEVE IR that are compatible with multiple zero-knowledge proof (ZKP) backends. These 
standardized representations allow integration with established backends like emp-zk4 and 
Diet Mac’n’Cheese5 via Rust interfaces, enabling both interactive and non-interactive proof 
protocols. 

Once complex proof statements are expressed in ZK-SecreC, the compiler produces two 
distinct executable components: a Prover and a Verifier. The Prover component takes the 
high-level description and transforms it into arithmetic circuits, subsequently generating ZK 
proofs. These proofs can follow an interactive protocol — where the Prover and Verifier 
exchange challenge–response messages in real time — or be converted into non-interactive 
proofs via techniques such as the Fiat-Shamir heuristic, eliminating the need for 
back-and-forth communication. The Verifier component, on the other hand, independently 
validates these proofs, ensuring their correctness without exposing any underlying sensitive 
data. This separation of roles enables the deployment of Prover and Verifier components in 
distributed, cross-platform settings. For example, within TEADAL, these components have 
been integrated into the observability toolchain, where the Prover component intercepts 
telemetry data and generate verifiable proofs of adherence to service-level agreements for 
some generic Verifier in a privacy-preserving manner, thereby reinforcing the overall trust 
framework of the federated ecosystem. 

viii.​Synthetic Data Generation 

Synthetic Data Generation is emerging as an additional privacy and trust-enhancing 
mechanism within TEADAL. In early TEADAL iterations, synthetic data was generated to 
support pilot cases such as evidence-based medicine, regional sustainability, and financial 
governance. By producing datasets that mimic real-world statistical properties without 
exposing sensitive information, these early implementations not only protected the privacy of 
pilots’ data but also helped to advance system validation, as well as enhance trust among 
data providers and consumers. 

Building on these initial successes, we evolved our approach to develop an integrated 
mechanism—the Data Synthesis Workflow Engine (DSWE). Within the TEADAL ecosystem, 
DSWE has been designed to integrate with existing data ingestion, generation, and sharing 
components. It serves now as an enabler, allowing synthetic data to become an integral part 
of the FDP ecosystem. This integration ensures that synthetic outputs can be directly utilized 

5 https://github.com/GaloisInc/swanky  
4 https://github.com/emp-toolkit/emp-zk  
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alongside real datasets, thereby enhancing overall data trustworthiness and facilitating 
secure cross-organizational collaboration. 

Our DSWE features a modular, pipeline-driven architecture that aligns with TEADAL’s 
comprehensive approach to data management. Core modules include an orchestrator for 
scheduling and managing synthesis tasks, advanced generative models for realistic data 
production, and evaluation components that continuously assess both utility and privacy. This 
design not only ensures flexibility and scalability but also facilitates integration with TEADAL’s 
federated data product mechanisms, enabling synthetic data to be part of a larger, 
interoperable data ecosystem. Technologically, the engine leverages containerized 
microservices managed via Kubernetes and orchestrated by workflow platforms such as 
Kubeflow Pipelines and Argo Workflows. This infrastructure supports reproducible 
deployments across heterogeneous environments—from local data lakes to cloud-based 
resources—ensuring that TEADAL’s synthetic data processes are both scalable and 
consistent. Tools like Nix further guarantee that the synthetic data workflows remain 
reproducible, declarative, and easily auditable. 

Security and privacy are also part of the DSWE’s design. We designed its architecture to 
integrate directly with TEADAL’s suite of other privacy-enhancing technologies, including 
Trusted Execution Environments (TEEs) and Secure Multi-Party Computation frameworks. 
The goal is to be able to turn these synthetic data generation processes into 
privacy-preserving computations, especially when real data is used for generation. We are 
able to integrate the same privacy-preserving data pipeline mechanisms in order to offload 
(to TEEs) or distribute synthetic data generation (MPC, see later) for private execution. This 
way, the DSWE ensures that generated synthetic data is secure and compliant, thus 
supporting TEADAL’s objective of trustworthy data sharing. Our DSWE not only generates 
high-quality synthetic data but also enriches the overall federated data ecosystem, ensuring 
that all data handling processes adhere to key EU regulations targeted by TEADAL—such as 
the GDPR and the Data Governance Act—thereby reinforcing both data protection and trust 
over data operations. 

The DSWE can integrate into both the Data Ingestion and Federated Data Product (FDP) 
Pipeline mechanisms. It can be triggered during consumer-provider interactions, dynamically 
generating synthetic data tailored to various use cases. The engine supports multiple data 
synthesis types, including Realistic Synthetic Data (RSD) that preserves statistical fidelity, 
Causal Synthetic Data (CSD) that maintains underlying causal relationships, Artificial 
Synthetic Data (ASD) based on aggregate rules, and Hybrid Synthetic Data (HSD) which 
blends these approaches. This flexibility ensures that the synthetic data generated meets the 
specific requirements of diverse pilot cases and operational scenarios within TEADAL. 

Moreover, when integrated with the broader TEADAL Trust Plane, the DSWE enables 
automatic embedding of utility and privacy assessments directly within the pipeline execution. 
These embedded evaluations not only ensure that every synthetic dataset is benchmarked 
for both performance and privacy compliance but also enhance overall auditability and 
explainability. Similar to other components, these assessments provide data owners with 
transparent insights into the synthetic data’s quality and security. This integration supports 
compliance with EU regulations, reinforces data sovereignty, and gives data owners means 
to manage and share synthetic datasets with more confidence. This way, data owners can 
benefit from transparent, objective assessments that support regulatory compliance and 
maintain control over data usage in a scalable, reproducible manner. 

ix.​TrustOps 
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TrustOps [5] is a set of practices and a methodology, developed within TEADAL, designed to 
embed evidence-driven trust throughout the software life cycle. It establishes a continuous 
cycle of evidence collection, authentication, attestation, and action, ensuring that every 
development and operational step, from code commits to artifact release, is backed by 
independently verifiable, tamper-proof records. 

At the core of TrustOps lies its evidence life cycle. The process begins with the collection of 
raw evidence, such as commit logs, build outputs, test results, and runtime telemetry. This 
raw evidence is then authenticated using cryptographic methods like digital signatures and 
secure identity verification to confirm its origin and integrity. Once authenticated, the 
evidence is attested through additional checks, such as remote attestation in TEEs, which 
verify that the processes and environments conform to established security policies. Finally, 
the attested evidence is actioned, meaning it is used to authorize subsequent operations, 
trigger automated responses, or be recorded on immutable ledgers like blockchains for 
auditability. This cyclical, continuous evidence chain transforms trust from a subjective 
assumption into an objective, verifiable property. 

TEADAL stands to benefit from TrustOps by integrating these evidence-driven practices into 
its data exchange, federated service operations, and the development of its own software 
components. By continuously collecting and verifying evidence across its workflows, 
TEADAL ensures that every interaction from sensitive data ingestion to final data product 
delivery is fully traceable and compliant with security and regulatory requirements. This 
approach extends to the entire lifecycle of TEADAL software components, where every 
phase is underpinned by cryptographic attestations and verifiable evidence. As a result, the 
entire ecosystem becomes transparent and auditable, reducing manual verification overhead 
while reinforcing trust, compliance, and operational resilience across the federated data lake 
architecture. 

TEADAL has employed a DevOps methodology for its development and operational 
practices, enabling rapid iteration and continuous delivery. However, traditional DevOps 
pipelines often rely on manual verification and lack cryptographic guarantees that every step 
is executed as intended. TrustOps enhances these practices by embedding an 
evidence-driven framework into the entire software life cycle. By automating the collection, 
authentication, and attestation of evidence, from code commits and build outputs to runtime 
telemetry, TrustOps transforms the DevOps approach into a continuously verifiable process, 
reducing manual overhead while ensuring robust security and compliance. 

However, lack of runtime reproducibility and comprehensive tracking of software artifacts 
impedes the TrustOps component's capability to accurately evaluate and certify system 
security, as well as to deploy software that was initially certified as secure. To examine these 
matters, it is advantageous to introduce the concept of a system dependency graph. 

Consider a software runtime environment (e.g., a Linux machine) and all elements employed 
in constructing its components (compilers, source code, etc.) as a directed multigraph where 
nodes represent files (executables, libraries, configurations, etc.). A directed edge x → y 
denotes that x is dependent on y, signifying that x was generated from y (e.g., y is the source 
code from which x was compiled, y is the compiler used to compile x, x is a package 
containing source code y, etc.) or x necessitates y for operation (e.g., y is a configuration file, 
a shared library required by x, etc.). This graph shall be termed the system dependency 
graph. It is well-established that this graph undergoes frequent modification over time for a 
given system (e.g., source code revision, security update, etc.), thus the graph from a 
previous day may differ from the present one. 

Tracking the evolution of this graph over time presents significant challenges when 
employing conventional engineering tools and methodologies. While nodes are frequently 
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associated with version numbers, these function merely as symbolic labels assigned by 
individuals to software artifacts, and their uniqueness as identifiers cannot be guaranteed. 
Instances such as an attacker compromising a library or a developer inadvertently omitting a 
version number update following minor library module modifications serve as illustrations. 
(While Continuous Integration/Continuous Deployment practices can mitigate this issue, they 
do not offer a comprehensive resolution.) Further complicating the matter is the potential for 
developers to incompletely document the dependencies of their source code or the precise 
versions of the software tools utilized during the build process. 

Security assessment and certification processes necessitate reference to a specific system 
dependency graph. This requirement arises from the temporal nature of security 
assessments, which can only evaluate system security at a particular point in time, 
contingent upon the system dependency graph existing at that juncture. However, identifying 
the precise graph operational during the assessment can prove challenging. Consequently, 
security assessments commonly rely on version numbers, which may hinder the definitive 
determination of system security, even when components share identical version numbers 
with those evaluated in the assessment, thus complicating the applicability of the assessment 
to the system under consideration. 

This matter is connected to the challenge of replicating the system dependency graph utilized 
during the certification process, which is considerably complex when employing conventional 
package management and deployment tools. Consequently, even after system construction, 
a definitive assurance that the security evaluation conducted during certification remains 
valid for the current system cannot be provided. As a specific scenario, the challenge of 
reinstating a system to a known secure state after a security incident—specifically, the state 
the system was in during a successful security evaluation—is notable. Executing this action 
proves difficult without precise knowledge of the system dependency graph as it existed 
during the evaluation. Furthermore, in practical application, the restoration procedure can be 
cumbersome and protracted, despite the application of an “Infrastructure as Code” 
methodology. 

To overcome these challenges, the TrustOps component adopts reproducible builds based 
on complete dependency graphs. The implementation relies on Nix, a purely functional 
programming language and package manager which offers a solution to precisely and 
unambiguously describe a system dependency graph. This capability allows the TrustOps 
component to reference specific analyzed graphs, enables the reproduction of certified 
secure systems, and facilitates easy rollback to known secure states. Moreover, the deployed 
system can be monitored to detect whether the current dependency graph differs from the 
one which the TrustOps component assessed. A difference in the graph could be a telltale 
sign of a security breach. In any case, the Teadal Node Operator can easily roll back the 
system to the state that the TrustOps component assessed. 

A concrete example of TrustOps integration in TEADAL is our new architecture for 
Trustworthy CI pipelines, where every component of the pipeline interacts to form an 
end-to-end, evidence-driven chain. The process starts with an authenticated version control 
system that enforces digital signatures on every commit, ensuring source code integrity and 
developer accountability. A workflow orchestration engine (using platforms like Argo 
Workflows or GitLab pipelines) manages task scheduling and dependency resolution, 
ensuring that every step adheres to predefined security policies. Sensitive tasks are 
executed within Trusted Execution Environments (TEEs), where a deterministic build system 
such as Nix guarantees that identical inputs always produce identical outputs in a secure, 
isolated context. Complementing these components, secure key management and remote 
attestation provide cryptographic proof that the TEE environment is genuine, while 
blockchain commitments record critical cryptographic hashes and signatures of build and test 
artifacts, creating an immutable, tamper-proof audit trail. 
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These interconnected components collectively deliver strong security guarantees throughout 
the CI process. The authenticated version control system assures that every code change is 
verifiable, while the orchestration engine ensures coordinated and secure execution of tasks. 
The TEE-based execution environment, with its embedded deterministic build system, 
minimizes the risk of tampering and inconsistencies, and any deviation is immediately 
detected. Secure key management and remote attestation further help the trustworthiness of 
the process by confirming the integrity of the execution environment. Finally, the artifact 
registry, integrated with blockchain commitments, stores signed build, test, and audit outputs 
in an immutable ledger that can be independently verified. This framework results in 
attestable artifacts that provide concrete, cryptographic evidence of compliance and integrity. 
Ultimately, by integrating blockchain-anchored, attestable artifacts into TEADAL's CI 
pipelines, every individual software component—whether it's the data ingestion modules, 
federated data product generators, identity management systems, or observability 
tools—gains a verifiable evidence trail that guarantees build integrity, minimizes independent 
verification overhead, and enables secure, compliant interactions across the entire TEADAL 
ecosystem. 

1.​ Further Efforts 

Building on the security assurances established by the TrustOps methodology, additional 
work is underway to streamline and automate the deployment and operation of TEADAL 
nodes across diverse environments. These enhancements aim to make it easier to adopt 
best practices and maintain consistent security postures without requiring specialized 
infrastructure expertise. 

A standardized Terraform module is being developed to bootstrap and manage 
Kubernetes-based infrastructure in a fully automated manner. The module abstracts complex 
infrastructure logic and provides a simplified interface that requires only Terraform usage for 
deployment and management. With minimal initial input from a system administrator, it can 
provision a fully functional, production-ready Kubernetes cluster. The design ensures that no 
deep understanding of the underlying infrastructure is necessary, streamlining the setup 
process and enabling fast, consistent adoption across various environments. 

The module is meant to be cloud-agnostic and supports multiple platforms, including 
OpenNebula, OpenStack, VMware, and Proxmox. It utilizes Talos Linux as the operating 
system for Kubernetes nodes, eliminating the need for traditional configuration management 
and increasing overall security and consistency. Internal Kubernetes components can be 
defined, enabled, or disabled based on project-specific requirements. Built-in tools are 
included for monitoring both the cluster and the workloads deployed into it. 

To promote secure-by-default deployments, the module enforces a set of best security 
practices where technically feasible. These enforced practices are governed by established 
patterns to ensure consistency and compliance across environments. For CI/CD workflows, 
Argo CD is integrated for continuous delivery, while Argo Workflows handles the continuous 
integration side, providing a GitOps-native, declarative and automated pipeline experience. 
This approach eventually helps us form a reliable baseline for standardizing Kubernetes 
infrastructure and operations across teams and projects. 

By unifying the provisioning of Kubernetes clusters, enforcing security best practices, and 
supporting GitOps-based continuous delivery, we plan to make this module extend the 
TrustOps vision to infrastructure management. The plan is to ensure that every step from 
code commit through runtime deployment is cryptographically verifiable and automatically 
tracked, reducing the operational overhead and risks associated with deploying TEADAL 
nodes. Organizations then can benefit from shortened setup times, reliable rollouts, 
consistent configuration baselines, and end-to-end traceability of changes. In turn, these 
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improvements can help the efficiency, reliability, and security of TEADAL environments, 
helping to meet compliance needs while maintaining high-performance data flows and rapid 
innovation cycles. 
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3​ DEMONSTRATION AND EVALUATIONS 

In this section, we apply the mechanisms and trustworthy infrastructure components on the 
use cases of TEADAL on two scenarios to prove the capabilities of the TEADAL Trust Plane. 

The TEADAL baseline includes all TEADAL tools and serves as the foundation for further 
customization. The TEADAL node is deployed on a Kubernetes cluster. It includes 
general-purpose tools such as Istio, ArgoCD, Minio or Jaeger, as well as TEADAL-specific 
components, such as the Catalogue, Advocate or a Policy Manager. As described in 
deliverables D6.1 and D6.2 [10, 11], TEADAL GitLab hosts a central TEADAL node 
repository at https://gitlab.teadal.ubiwhere.com/teadal-tech/teadal.node. The TEADAL node 
is installed and running on all use-case specific scenarios.  

B.​ BLOCKCHAIN-BASED TRUST MECHANISMS – IDENTITY TRUST 
Blockchain State Anchoring was successfully tested on a development environment 
and the private blockchain used for testing purposes was anchored to the public Sepolia 
Ethereum testnet. 

The following is one of the transactions submitted to the Sepolia testnet: 

●​ 0x3504160449c39b81bb548f0b771230fae6ac3de8f94817d8092757c0fa16ca5e 

 

FIGURE 11: INPUTS OF THE EXAMPLE TRANSACTION. 

Where we can see the input parameters as: 

●​ _networkId: 
○​ 0x27e186b5dd11cfc828ed290346b3c69387a3e51a71b111fba9e3e59ceb37

8e7c: The Network identifier, as the resulting sha256 digest of the 
“Teadal-Blockchain” name. 

●​ _nodeId: 
○​ 0xdcf256667b44f389eedfb23414a846fa836a9df3aebffbac6d24de4717a5de

a0: The node identifier, as the resulting sha256 digest of the 
“teadal-validator-3” name. 

●​ _rootHash: 
○​ 0xe6a19566f2cdf865216695d89a5affb6f5563244725146b60ec0f84e4138a3

69: The hash of the block that is anchored with the current transaction 
●​ _lastBlockNumber: 

○​ 1455462: The current block number that is being anchored 

To validate the state, another transaction by a different node can be red: 

●​ 0x6b1874cebf6467f98811e2bde0dd013d71541791aa777e584a0c7c05153e24aa 
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FIGURE 12: INPUTS OF THE EXAMPLE TRANSACTION BY A DIFFERENT NODE. 

We can see that the transaction is about the same network (same _networkId) but from a 
different node.  

The two nodes are correctly synchronized and they agreed on the state of the 
Teadal-Blockchain network at block number 1455462. 

Passkeys mark a significant advancement over traditional password-based authentication 
systems. Below are the main advantages that make this technology particularly secure and 
versatile:  

●​ Password Elimination: Passkeys eliminate the risks associated with stolen or 
compromised passwords.  

●​ Robust Cryptography: The secp256K1 curve ensures a high level of security.  
●​ Private Key Protection: The private key is stored locally on the user's device, ensuring 

it is never exposed during authentication. Tools like MetaMask serve as wallets to 
securely store keys and simplify access to signing features.  

●​ Updates and Revocation: If the private key is compromised, the associated DID can 
be updated to replace the compromised key with a new one, ensuring continuity of 
identity and security.  

●​ Interoperability: Leveraging the DID standard, passkeys can be used across multiple 
platforms, enabling secure, portable, and decentralized identity management.  

The inclusion of the secp256k1 curve in the official COSE registry, as outlined in RFC 8812 – 
"Registrations for WebAuthn Algorithms in COSE and JOSE", formally establishes support 
for the ES256K algorithm and the secp256k1 curve within the COSE signature framework 
one of the foundational components of the WebAuthn protocol. For reference, the official 
document can be found here: https://www.rfc-editor.org/rfc/rfc8812. 

That said, it’s worth noting that despite this standardization, practical support for secp256k1 
across FIDO2 devices and mainstream browsers remains limited. Popular 
implementations—such as YubiKey, Google Titan, and SoloKeys—as well as WebAuthn 
stacks in browsers like Chrome, Firefox, and Safari continue to favor the secp256r1 curve. 
This choice aligns with current NIST recommendations and the capabilities of widely adopted 
cryptographic hardware. 

As a result, using secp256k1-based passkeys in blockchain-related environments currently 
requires alternative tooling—for example, cryptographic wallets like MetaMask or Ledger, and 
decentralized identity protocols (DIDs) as previously discussed. In Web3 contexts, this 
approach offers a strategic advantage: it allows identity, authentication, and digital signatures 
to converge on a single key, minimizing redundancy and streamlining interoperability 
between conventional systems and blockchain-based infrastructure. 

Smart Contract for DIDs offer an advanced infrastructure for managing decentralized 
identities, ensuring transparency, immutability, and security. The addition of advanced 
features such as multisig wallet support and identity ownership tracking further enhances the 
trust and security of the system, allowing multiple entities to participate in the 
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decision-making process. This approach is fundamental to building identity systems that 
respect the principles of digital sovereignty and distributed trust. 

There isn’t a single “official” smart contract for DIDs on a blockchain. The W3C only lays out 
the method specs (the DID Core rules and the Method Registry) and leaves it up to each 
method to build its own implementation . One of the earliest and most widely adopted 
solutions is uPort’s Ethr‑DID‑Registry (ERC‑1056) 

Available at: https://github.com/uport-project/ethr-did-registry 

C.​ PRIVACY-PRESERVING COMPUTATION COMPONENTS - 
COMPUTATIONAL TRUST 
Sharemind MPC tooling and technology has been developed throughout the project. We 
have successfully demonstratd Sharemind MPC runtime integration with TEADAL baseline 
technologies. We demonstrated how to encode privacy-preserving computations in the 
SecreC programming language and ran the demonstrator with three computing nodes, 
generating a large output dataset from three private input datasets. The setup mimics the 
evidence-based medicine pilot scenario (see Figure 9). Next iterations will focus on gathering 
benchmarks and performing technical evaluation. 

 

FIGURE 13: SHAREMIND MPC DISTRIBUTED PIPELINE DEMONSTRATOR FOR THE EVIDENCE-BASED MEDICINE PILOT. 

TEE-based pipelines were successfully demonstrated in D5.2 [2], inspired by the former 
shared financial governance use case (see Figure 10). We demonstrated the 
programmability, integration, and execution of privacy-preserving data pipelines, in a 
distributed setting consisting of a multi-node Kubernetes cluster, where private tasks in a 
pipeline are offloaded and orchestrated to run on trusted confidential computing units, even if 
the host system is untrusted. Previous deliverable D4.2 [12] and parallel deliverable D3.3, 
further detail the implementation, assessment, and validation procedures. 
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FIGURE 14: ARGO WORKFLOW EXAMPLE PIPELINE, AS YAML FILE ON THE LEFT, COMPRISING ONE TEE-BASED TASK, 
LABELED VIA THE RUNTIMECLASSNAME ATTRIBUTE AS RUNNING INSIDE AN INTEL TDX VM, AND ITS EXECUTION 

AND VISUALIZATION ON THE RIGHT. 

We have been augmenting and developing ZK-SecreC6 7, enriching its set of standard library 
functionalities and program demonstrators. The code is now open source and we have been 
maintaining it. We have successfully encoded verifiability statements in ZK-SecreC, 
specifically for SLA verification, detailed in D3.3. We created an initial prototype and 
demonstrated its integration with monitoring and observability tooling used in TEADAL, as 
seen in Figure 11. Tables 1 and 2 also show comparisons of benchmarks between a 
ZK-SecreC implementation and a ZK-SNARK (gnark8) implementation.  

In evaluating interactive (ZK-SecreC) and non-interactive (zk-SNARK) ZKP pipelines for 
continuous SLA monitoring, both implementations showed distinct trade-offs in performance 
and architectural complexity (see Figures 12 and 13). The zk-SNARK pipeline exhibited 
superior runtime and resource metrics—achieving verification speeds nearly 10× faster and 
using significantly less CPU and memory on the verifier side—thanks to its asynchronous, 
decoupled design and succinct proofs. However, these gains come at the cost of requiring a 
trusted setup and higher cryptographic development overhead. In contrast, the 
ZK-SecreC-based interactive approach, while slower and more tightly coupled due to its 
synchronous design and reliance on active network communication, offered considerable 
advantages in developer ergonomics and programmability. Its modular Rust-like syntax and 
direct circuit expressiveness made it more accessible for defining complex SLA verification 
logic. Thus, while zk-SNARKs are better suited for scalable, fault-tolerant deployments, 
ZK-SecreC remains a valuable tool for prototyping and implementing advanced, 
logic-intensive verification tasks where rapid iteration and rich expressiveness are key. 

8 https://github.com/Consensys/gnark  
7 https://github.com/zk-secrec  
6 https://zk-secrec.cyber.ee/documentation/  
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FIGURE 15: ARCHITECTURE OF THE PROTOTYPE INTEGRATION OF ZK-SECREC WITH OPENTELEMETRY TOOLING 
FOR SLA VERIFIABILITY. 

 

TABLE 1: EXECUTION TIME COMPARISON BETWEEN ZK-SECREC AND ZK-SNARK IMPLEMENTATIONS. 

 

TABLE 2: RESOURCE USAGE COMPARISON BETWEEN ZK-SECREC AND ZK-SNARK IMPLEMENTATIONS. 

For zkML, we studied the Easy Zero-Knowledge Inference (EZKL) library, tested its 
functionality, and applied it to a real-world use case. Our work resulted in a paper, which was 
presented as a demo paper at the Brains 2024 conference in Berlin [4]. 

D.​ TRUST MANAGEMENT TOOLS - BEHAVIOR TRUST 

Advocate is installed and running in the three use-case specific scenarios evidence-based 
medicine, smart viticulture and industry 4.0. Additionally, Advocate is installed on two 
use-case independent scenarios, showcasing its usage for energy certification and in a 
distributed market. To gain insights into the practicality of Advocate, we execute a set of 
experimental test cases, measuring the performance of the claim creation. These tests 
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assess the following operations: building (build) the claim, hashing (keccak) and signing 
(sign) the claim, storing the claim in IPFS (ipfs), hashing (sha256) and anchoring it on-chain 
(blockchain_tx), and storing it in a database (db_tx). The results of those measurements are 
depicted below. 

 

FIGURE 16: : CLAIM CREATION PERFORMANCE. 

The measurements indicate that with an increasing claim size, the total time required for 
claim creation also increases. For smaller sizes, up to 1024 MiB, the total time increases 
gradually. However, beyond 2048 MiB, there is a noticeable rise in the total processing time. 
The IPFS becomes the most performance-intensive part of the claim creation for larger 
claims. From 4096 MiB, it exceeds the remaining operations’ performance. This suggests 
that initiating the storage in IPFS may represent a bottleneck in the claim creation for larger 
claims. In contrast, operations such as signing, hashing with Keccak and SHA-256, and even 
blockchain and database transactions contribute relatively little to the total performance of 
the claim creation. 

For the TNS/Federation Smart Contract, we provide measurements of the gas costs 
associated with deployment and execution within the TEADAL ecosystem. The gas cost 
directly impacts the economic feasibility of interacting with Smart Contracts. Higher gas costs 
translate to higher transaction fees for users. 

Table 1 focuses on the gas costs associated with deploying the three smart contracts: 
Federation, DocumentStore, and ENSRegistry. Deployment gas costs are incurred only once 
when the contract is initially deployed to the blockchain. 

 

Smart Contract Federation Document Store ENSRegistry 
Gas cost 4,669,569 1,796,962 1,084,616 

TABLE 3: SMART CONTRACT DEPLOYMENT GAS COST. 
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Our results show that the Federation contract has the highest deployment cost at 4,669,569 
gas. In contrast, the ENSRegistry contract has the lowest deployment cost, at 1,084,616 gas. 
The DocumentStore contract's deployment cost of 1,796,962 gas falls between the other two. 

Table 2 breaks down the minimum, maximum and average gas costs for executing functions 
within these smart contracts: 

Smart Contract Function Gas cost 
Federation addDataset 127,944 

removeDataset 43,794 

approveMember 103,697 

removeMember 36,395 

registerPolicy 100,351 

deregisterPolicy 36,703 

publishMetadata 42,358 

rateDataset 103,314 

raiseConflict 120,755 

resolveConflict 54,267 

trackDataLineage 29,548 

DocumentStore issue 48,312 

revoke 48,528 

ENSRegistry setResolver 48,837 

setSubnodeOwner 50,240 

TABLE 4: SMART CONTRACT FUNCTION EXECUTION GAS COST. 

Our results show that the most gas-intensive functions of the Federation contract are 
addDataset (127,944 gas), raiseConflict (120,755 gas), and approveMember (103,697 gas). 
Simpler functions such as trackDataLineage (29,548 gas), removeMember (36,395 gas), and 
deregisterPolicy (36,703 gas) have lower associated gas costs. The DocumentStore contract 
shows consistent gas usage for issue (48,312 gas) and revoke (48,528 gas). The 
ENSRegistry contract functions setResolver (48,837 gas) and setSubnodeOwner (50,240 
gas) show moderate gas costs. 

The Catalog transaction Observer feature is implemented in the TEADAL Federated 
Metadata Catalogue by means of Service Tasks in BPMN processes. At the time of writing, 
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the logging of Catalogue events to Advocate has been integrated for these processes or user 
requests: 

●​ asset creation and publication (lifecycle process) 
●​ asset deletion (user request) 
●​ FDP contract creation request (user request) 

The implementation of the Data Synthesis Workflow Engine (DSWE) demonstrated its 
technological and integration feasibility in the context of TEADAL tools and architecture. We 
performed synthetic data generation for pilots in the initial phases of the project, detailed in 
D2.1, D2.2, and D2.3 [7, 8, 9]. We modelled the synthetic data pipelines and datasets 
according to the pilot requirements, schemas from real datasets, and other use case goals. 
We have successfully generated datasets that serve ongoing validation purposes.  

To assess scalability, we benchmarked it on use case datasets of 1K, 10K, and 100K rows 
using a cloud VM (8 vCPUs, 12GB RAM). The pipeline included data loading, preprocessing, 
generation, and parallel evaluation (quality, diagnostic, privacy). As shown in Figure 15, 
loading and preprocessing remained constant (around 0.1 min), while generation rose from 
0.14 to 5.35 min, privacy from 0.14 to 9.46 min, and quality from 0.10 to 5.59 min. Total 
runtime scaled sublinearly: 1.6 min (1K), 5.1 min (10K), and 16 min (100K). At 100K rows, 
privacy and quality evaluations accounted for over 90% of runtime, but with parallel execution 
via Kubeflow, their durations didn’t accumulate. These results confirm the DSWE scalability 
and show how modular, concurrent design mitigates bottlenecks at scale. 

 

FIGURE 17: EXECUTION TIME PER SDG PIPELINE COMPONENT ACROSS DATASET SIZES. 

Following TrustOps principles, we created a first prototype of the Trustworthy CI pipeline and 
demonstrated its potential integration with TEADAL-related baseline tooling. We developed a 
prototypical scenario for generating attestable artifacts from build, test, and audit phases of a 
piece of software (see Figure 16). We also ran initial benchmarks and established scalability 
estimations for larger and more frequent continuous integration processes, in Figure 15. 
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Our evaluation shows that integrating Trusted Execution Environments (TEEs) into CI 
pipelines introduces moderate, controlled overhead—such as a 3.35-minute increase in 
workflow time and higher CPU/memory usage per task—but this is offset by significant trust 
and scalability benefits in software supply chains. Despite lacking the runtime optimizations 
of mature Docker-based systems, our TEE-based prototype demonstrates practical viability, 
with the additional costs amortized across multiple Consumers who benefit from lightweight, 
cryptographically verifiable artifacts (Figure 17). A simulation modeling CI scaling confirms 
that our approach drastically reduces redundant re-execution efforts as Consumer numbers 
grow, offering near-constant Producer-side costs (Figure 18). Moreover, by leveraging 
deterministic builds and secure enclave attestations, our system ensures early detection of 
tampering or misbehavior, thereby eliminating wasted verification cycles and enhancing 
artifact trustworthiness. These results affirm the potential of TEE-backed architectures to 
deliver scalable, efficient, and secure CI pipelines, with future improvements expected 
through deeper orchestration and virtualization integration. 

 

FIGURE 18: EVIDENCE-DRIVEN TRUSTWORTHY CI PIPELINE IMPLEMENTATION. 

 

FIGURE 17: AVERAGE COMPARISON RESULTS OF 10 RUNS. 
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FIGURE 19: SCALING OF CI EXECUTION, CPU, AND MEMORY USAGE OVER TIME, FOR A GROWTH RATE OF 10 
CONSUMERS PER MONTH AND A NEW RELEASE EVERY MONTH. 

E.​ USE-CASE INDEPENDENT SCENARIOS 

To demonstrate advanced capabilities of the Trust Plane within the TEADAL ecosystem, two 
use-case independent scenarios have been developed. The following section describes two 
fundamental scenarios: one focused on energy certification and the other on a distributed 
market interaction. 

i.​Energy Certification 

The energy certification scenario represents the first use-case independent scenario 
developed. It involves a computing resource provider within a federated environment, offering 
processing capabilities, and an internal service consumer that requires transparency and 
verifiability of the energy consumed by these resources. A key requirement from the 
consumer is the ability to independently verify the energy usage associated with their 
workloads. To support this, Advocate acts as an independent verifier, issuing claims based 
on selected energy consumption measurements related to the processing activities. These 
claims are derived from the provider’s usage metrics using Kepler. By accessing this data, it 
is possible to generate signed attestations that confirm energy usage, enabling the consumer 
to verify whether their resource utilization aligns with expected or target energy consumption 
levels. This ensures accountability and builds trust within the organization, since the integrity 
and non-repudiation of energy consumption claims is maintained. 

ii.​Distributed Market 

The distributed market scenario represents the second use-case independent scenario that 
was developed to showcase the capabilities of the Trust Plane. It involves a collaboration 
between a service provider, offering data processing capabilities (e.g., compute resources or 
storage), and a service consumer, that submits data for processing and expects to be billed 
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based on actual resource consumption. A key requirement from the consumer is 
transparency and verifiability of the billed costs. To support this, Advocate acts as an 
independent verifier, issuing claims based on selected cost measurements related to the 
processing activities. These claims are derived from the provider’s usage metrics using 
OpenCost. By accessing this data, signed attestations are generated that confirm resource 
usage and corresponding costs, enabling the consumer to verify whether charges align with 
actual consumption. This ensures accountability and builds trust between the parties, since 
integrity and non-repudiation of billing claims is maintained. 

F.​ USE-CASE SPECIFIC SCENARIOS 

To demonstrate the integration of selected components of the TEADAL Trust Plane, we now 
revisit their application within the five pilot cases of TEADAL. These pilots include: 
Evidence-Based Medicine, Mobility, Smart Viticulture, Industry 4.0, and Shared Financial 
Data Governance. This section focuses on how tools and components have been 
incorporated into the pilots to support trustworthy data sharing across federated 
environments. 

i.​USE CASE PILOT #1: EVIDENCE-BASED MEDICINE 

The evidence-based medicine scenario simulates a clinical study where medical parameters 
are selected in a web-based client. The system comprises three nodes, two that are hospitals 
and one that is both hospital and researcher who will run a study. A description of the 
evidence-based medicine pilot can be found in deliverable D2.1, D2.2 and D2.3 [7, 8, 9] 
under the “USE CASE PILOT #1: EVIDENCE-BASED MEDICINE” chapter. 

Advocate collects interaction evidence for the purposes of auditing and establishes a chain 
of trust between data providers and data consumers. This is important in a medical use case, 
where sensitive patient data is involved. By closely observing the entire data-sharing 
lifecycle, Advocate ensures that all interactions adhere to predefined policies and compliance 
requirements. Furthermore, it continuously reviews the collected evidence to verify that 
policies, such as restricting access to an sFDP only to consumers from a designated 
organization and ensuring deployment at an authorized location, are upheld. It interacts with 
the Federation Operation Smart Contracts and Evidence Storage. The Federation Operations 
describe the smart contracts required for interacting in the federation, namely the Federation 
Smart Contract and the TNS Smart Contract. The Evidence Storage combines the 
functionality required for storing and retrieving evidence, including the IPFS as well as the 
DocumentStore Smart Contract. As shown in Figure 19, in the evidence-medicine pilot 
Advocate is installed on each of the hospital nodes that are exposing an sFDP. 
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FIGURE 20: : TRUST PLANE IN THE EVIDENCE-BASED MEDICINE PILOT. 

Sharemind MPC technology is showcased, drawing inspiration from the Evidence-based 
Medicine pilot. In this scenario, three hospital nodes run an MPC protocol written in the 
SecreC language to collaboratively execute a query on private patient inputs while ensuring 
data confidentiality. Each hospital provides its own private statistical distributions regarding 
fasting blood glucose (FBG) levels from their internal datasets (which may have any size), 
and through secure, rule-based computations, the protocol generates a synthetic dataset 
consisting of N rows (e.g. 10 million). The scenario simulates a researcher requesting a 
dataset of FBG (mg/dL) observations for patients aged between 18 and 25 over a specified 
date range. The dataset contains patients ids, ages, observation dates, concept ids, 
observation value and unit id. This setup not only preserves the privacy of the patient data by 
never exposing raw inputs but also enables the researcher to work with a synthesized 
dataset that reflects the underlying distributions from each hospital. This demonstration 
shows how Sharemind MPC can enable privacy-preserving data analysis in healthcare, 
facilitating collaborative research without compromising patient confidentiality. Additionally, 
with this demonstration, we show the validation of KPI 2.3 that states the “Ability to set up 
privacy-preserving/confidential analytics from at least 3 members of a federation, with at least 
10 million rows in the combined dataset.” 

ii.​USE CASE PILOT #3: SMART VITICULTURE 

The smart viticulture pilot showcases a data sharing scenario for collecting soil moisture 
information of multiple vineyards. Virtual edge devices, located at different vineyards, collect 
and store the data as part of a centralized data lake. The aggregated soil moisture data is 
exposed. A description of the smart viticulture pilot can be found in deliverable D2.1, D2.2 
and D2.3 [7, 8, 9] under the “USE CASE PILOT #3: SMART VITICULTURE” chapter. 

As shown in Figure 20, Advocate is installed on the node aggregating soil moisture data 
from the virtual edge devices. It allows to collect evidence for interactions related to sharing 
aggregation results to external customers. By closely observing the entire data-sharing 
lifecycle, Advocate ensures that all interactions adhere to predefined policies and compliance 
requirements. Furthermore, it continuously reviews the collected evidence to verify that 
policies, such as restricting access to the sFDP only to the vineyard owner are upheld. As 
already described in the first use case dependent pilot, the evidence-based medicine pilot, 
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the TEADAL Trust Plane again relies on interaction with the Federation Operations and the 
Evidence Storage. 

 

FIGURE 21: TRUST PLANE IN THE VITICULTURE PILOT. 

iii.​USE CASE PILOT #4: INDUSTRY 4.0 

The industry 4.0 pilot involves two ERT Group plants located in Portugal and the Czech 
Republic. Each of the plants calculates a set of Key Performance Indicators (KPIs), which are 
shared to calculate company-wide KPIs. The Czech plant functions only as a plant, while the 
Portuguese plant functions both as a plant and as headquarters. As such, the Portuguese 
plant collects its own KPIs and those of the Czech plant, stores the unified, company-wide 
KPIs and exposes them as FDP. A description of the industry 4.0 pilot can be found in 
deliverable D2.1, D2.2 and D2.3 [7, 8, 9] under the “USE CASE PILOT #4: INDUSTRY 4.0” 
chapter. 

As shown in Figure 21, Advocate is installed on the ERT nodes of both the Czech and the 
Portuguese plant. It allows to collect evidence for interactions related to sharing plant-specific 
KPIs between the nodes and company-wide KPIs. This establishes a chain of trust between 
ERT plant operators and company management. By closely observing the entire 
data-sharing lifecycle, Advocate ensures that all interactions adhere to predefined policies 
and compliance requirements. Furthermore, it continuously reviews the collected evidence to 
verify that policies, such as restricting access to the sFDP only to the company management 
are upheld. As already described in the first use case specific pilot, the evidence-based 
medicine pilot, the TEADAL Trust Plane again relies on interaction with the Federation 
Operations and the Evidence Storage. 
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FIGURE 22: TRUST PLANE IN THE INDUSTRY 4.0 PILOT. 

iv.​NEW USE CASE PILOT: OPTIMISING FINANCIAL RETURNS FROM 
RENEWABLE ENERGY SOURCES 

A financial focused integration was first described in the shared financial data governance 
pilot that can be found in deliverable D2.1 and D2.2 [8, 9] under the “USE CASE PILOT #5: 
SHARED FINANCIAL DATA GOVERNANCE” chapter. BOX2M replaces this financial data 
governance pilot, as described in  D2.3 [7] under the chapter “NEW USE CASE PILOT: 
OPTIMISING FINANCIAL RETURNS FROM RENEWABLE ENERGY SOURCES”, to which 
we refer to in this deliverable. 

TEE-based pipelines were implemented in the financial-focused pilot to securely process 
sensitive financial data while ensuring strict regulatory compliance. In these pipelines, 
confidential financial data is processed within VM‐based Trusted Execution 
Environments—using Confidential Containers orchestrated via Kubernetes—which isolate 
and safeguard critical computations. Remote attestation generates cryptographic evidence of 
the secure execution environment. As detailed in D5.2 [2], this architecture not only protects 
sensitive financial operations from unauthorized access but also enhances transparency and 
auditability, ultimately providing stronger trust guarantees for distributed operations. 
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4​ CONCLUSIONS 

This deliverable completes the third phase of establishing the TEADAL trust architecture. In 
this report, we focused on validating the trust mechanism provided by TEADAL and 
demonstrating its capabilities in use case independent and TEADAL specific use case 
dependent scenarios. Therefore, we revised the requirements gathered from the pilot 
descriptions and defined the three trust layers of identity, computational, and behavioral trust. 
Building on the previous results, we reviewed the trustworthy architecture with its 
components, focusing on the trust layers. We also explained how the various components 
and mechanisms apply to a federated environment. 

Our evaluation demonstrates the capabilities of integrating tools and components such as 
Advocate or TrustOps, and having an end-to-end verifiable FDP, and covers several aspects 
of a validation, such as the cost of gas and experiments on the claim performance of 
Advocate. 
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