

WWW.TEADAL.EU

Grant Agreement No.: 101070186 Topic: HORIZON-CL4-2021-DATA-01-01
Call: HORIZON-CL4-2021-DATA-01 Type of action: HORIZON-RIA

D4.3 STRETCHED DATA LAKES

FINAL REPORT AND EVALUATION

Revision: 1.0

Work package WP 4

Task Task 4.1, 4.2, 4.3

Due date 31/05/2025

Submission date 31/05/2025

Deliverable lead IBM

Version V0.9

Authors Katherine Barabash (IBM), Bruno Feitas (Ubiwhere), João Viegas (Ubiwhere),
Temesgen Magule Olango (ALMAVIVA), Alessio Carelini (CEFRIEL), Gabriele
Cerfoglio (Martel), Sergio Sestili (ALMAVIVA), Samantha Hine (ALMAVIVA)

Reviewers Pierluigi Plebani (POLIMI)

Boris Sedlak (TUW)

Abstract Final technical summary of the control plane, data management, and trustworthy data
flows addressing the defined KPIs

Keywords Control plane, Data Lake, multi-cloud, multi-cluster, data pipelines

Document Revision History

http://www.teadal.eu/

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 2 of 76

Version Date Description of change List of contributor(s)

draft 01/03/2025 First draft Katherine Barabash (IBM)

v0.1 18/03/2025 Initial ToC and contents WP4 partners

V0.2 01/04/2025 First round of contribution to the ToC Katherine Barabash (IBM), Bruno Feitas
(Ubiwhere), João Viegas (Ubiwhere),
Temesgen Magule Olango (ALMAVIVA)

V0.3 29/04/2025 Collected comments, added ASG section
contents

Katherine Barabash (IBM)

V0.4 04/05/2025 Finalized the Executive Summary and
Introduction

Katherine Barabash (IBM)

V0.5 06/05/2025 Finalized Sections 2 and 3 Katherine Barabash (IBM)

V0.6 12/05/2025 Catalogue Flows in Section 2

RBAC aspects in Section 2

Section 5

Alessio Carelini (CEFRIEL),

Gabriele Cerfoglio (Martel),

Katherine Barabash (IBM)

V0.7 14/05/2025 Section 3

Small updates to Section 2

Editing and formatting

Temesgen Magule Olango (ALMAVIVA),
Sergio Sectile (ALMAVIVA), Gabriele
Cerfoglio (Martel), Alessio Carelini
(CEFRIEL), Katherine Barabash (IBM)

V0.8 15/05/2025 Internal review version Katherine Barabash (IBM)

V0.9 25/05/2025 Internal review 1 Pierluigi Plebani (POLIMI), Katherine
Barabash (IBM)

1.0 28/05/2025 Internal review 2 Boris Sedlak (TUW), Katherine Barabash
(IBM)

DISCLAIMER

Funded by the European Union (TEADAL, 101070186). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them. This
work has received funding from the Swiss State Secretariat for Education, Research and
Innovation (SERI).

COPYRIGHT NOTICE

© 2022 - 2025 TEADAL Consortium

Project funded by the European Commission in the Horizon Europe Programme

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 3 of 76

Nature of the deliverable: R

Dissemination Level

PU
Public, fully open, e.g. web (Deliverables flagged as public will be automatically
published in CORDIS project’s page)

✔

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 4 of 76

EXECUTIVE SUMMARY

The TEADAL project empowers organizations to securely collaborate on data-driven tasks
across distributed infrastructures. It introduces a novel architecture for federated data
sharing, allowing participating organizations to contribute, transform, and consume
datasets, efficiently and under well-defined policies. Key to this architecture is the concept
of a Federated Data Product (FDP), which is a shareable REST endpoint for exposing
organizational data, and of a Shared Federated Data Product (sFDP), created to expose
the FDPs across organizations in a controlled way. TEADAL implements this architecture
using Kubernetes-based deployments and GitOps practices to maintain consistency and
security across the federation.

This document reports on the outcomes of Work Package 4 (WP4) within the TEADAL
project. WP4 focuses specifically on realizing and managing cross-organizational data
flows, originally conceptualized as "stretched data lakes" and evolved over time into a more
modular and runtime-oriented architecture. The contributions described here include
design, prototyping, and tooling that together allow shared federated data pipelines to be
declaratively specified, consistently deployed, and programmatically observed. These
results directly support the broader architectural goals of TEADAL and provide practical
mechanisms to implement and govern data flows as part of shared infrastructures.

These are the main functional modules provided by WP4:

1. Monitoring subsystem, realized as AI-driven Performance Monitoring (AI-DPM) – a
set of components responsible for collecting runtime operational data from nodes in
TEADAL federation, including data on server performance and energy usage,
analysing this data to create actionable insights such as predictions and alerts. Insights
made available by these components are used by the control plane for selecting the
most suitable deployment targets for the TEADAL data products.

2. Automation subsystem, realized as Automatic SFDP generation (ASG) – a set of
components that assist developers in creating SFDPs to share data exposed by the
existing FDPs according to agreements achieved between the data provider and the
data consumer. ASG relies on generative AI capabilities for selecting data
transformations that need to be applied to the source datasets. ASG is working as part
of the SFDP creation flow facilitated through the TEADAL Catalogue, as briefly
presented here for completeness. ASG also includes a runtime library for unified
runtime execution and control of the generated SFDPs.

3. Optimization subsystem, responsible for selecting the deployment targets for SFDPs
at runtime among the TEADAL Nodes in the federation, based on the operational data
and insights provided by monitoring subsystem as well as on the labels attached to the
infrastructure to signify the capabilities of individual infrastructure components.

4. Deployment subsystem, or the multi-node control plane responsible for deploying the
data products and initiating their runtime monitoring.

In addition to presenting these major components, the report describes their relationship
with the components developed in other technical work packages (WP3 and WP5), their
roles for use cases presented by the TEADAL pilots, and their planned contribution to the
KPI validation to be performed in the final stage of the project, M34-M36, as part of WP6.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 5 of 76

TABLE OF CONTENTS

1. INTRODUCTION .. 10

1.1 Purpose and Scope .. 10

1.2 Context: Towards Declarative Control of the AI-Powered Data Platform 11

1.3 Document Structure .. 12

2. STRETCHED DATA LAKES .. 13

2.1 Revisiting the “stretched data lakes” concept .. 13

2.2 Stretched Data Lakes Architecture ... 14

2.3 Supporting TEADAL requirements .. 15

2.4 Realization and Platform Integration ... 17

3. THE MONITORING SUBSYSTEM (AI-DPM) ... 28

3.1 AI-based Performance Monitoring Process ... 28

3.2 AI Models ... 31

3.3 Architecture and Integration Overview .. 33

3.4 Experiments and results ... 34

3.5 AI-DPM Outputs ... 39

4. THE AUTOMATION SUBSYSTEM (ASG) ... 42

4.1 The ASG Dependencies and Technology Choices ... 42

4.2 The ASG High Level Design ... 47

4.3 The ASG Software Architecture .. 51

4.4 Operational Aspects ... 62

5. THE OPTIMIZATION AND THE DEPLOYMENT SUBSYSTEMS 68

5.1 The Optimization Subsystem .. 69

5.2 The Deployment Subsystem ... 72

6. SUMMARY ... 75

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 6 of 76

LIST OF FIGURES

FIGURE 1 CONTROL PLANE COMPONENTS IN SFDP PRODUCTION AND USAGE 14

FIGURE 2 CATALOGUE – UI VIEW ... 19

FIGURE 3 CATALOGUE – CONTRACT REQUEST PROCESS ... 19

FIGURE 4 CATALOGUE – AGREEMENT TERMINATION PROCESS 20

FIGURE 5 PROCESS COORDINATION THOUGH CATALOGUE UI AND API 21

FIGURE 6 EXAMPLE REGO CODE FOR SECURING AN FDP .. 23

FIGURE 7 METHOD FOR EVALUATING RBAC RULES AGAINST THE REQUEST 23

FIGURE 8 REGO POLICY EXAMPLE FOR ASSOCIATING PERMISSIONS WITH ROLES 24

FIGURE 9 EXAMPLE OF NOT USING IMPLICIT SINGLETON ROLES 25

FIGURE 10 EXAMPLE OF USING IMPLICIT SINGLETON ROLES ... 25

FIGURE 11 AUTHORING POLICIES IN THE “POLICY EDITOR” WEB APP 26

FIGURE 12 POLICY EDITOR – POLICY GENERATION REQUEST VIEW 26

FIGURE 13 POLICY EDITOR – POLICY GENERATION RESULT VIEW 27

FIGURE 14 THE FIVE-STEP AI-DPM PROCESS .. 29

FIGURE 15 AI-DPM APPLICATION ARCHITECTURE (COMPONENTS) DIAGRAM 33

FIGURE 16 PREDICTIVE INSIGHT FOR MEMORY AVAILABILITY ON THE NODE 35

FIGURE 17 ANOMALY DETECTION FOR MEMORY AVAILABILITY ON THE NODE 36

FIGURE 18 PREDICTIVE INSIGHT FOR POWER CONSUMPTION PER NODE 37

FIGURE 19 ANOMALY DETECTION FOR POWER CONSUMPTION PER NODE 37

FIGURE 20 PREDICTIVE INSIGHT FOR ISTIO TRAFFIC PER NODE 38

FIGURE 21 ANOMALY DETECTION FOR ISTIO NETWORK TRAFFIC PER NODE 38

FIGURE 22 AI-DPM SERVICE DASHBOARD ... 40

FIGURE 23 GIN CONNECTOR SCHEMA .. 44

FIGURE 24 ASG COMPONENTS AND DEPENDENCIES .. 48

FIGURE 25 EXAMPLE OF SFDP /DOCS VIEW ... 50

FIGURE 26 SFDP SPECIFICATION SCHEMA .. 52

FIGURE 27 ASG-RUNTIME MODULES ... 53

FIGURE 28.ENV FILE EXAMPLE FOR CONFIGURING SFDPS AT RUNTIME 54

FIGURE 29 THE PROCESS OF SERVING THE SFDP DATA ENDPOINTS 60

FIGURE 30 SERVING SFDP ENDPOINT DATA FROM THE RESPONSE CACHE 61

FIGURE 31 SERVING SFDP ENDPOINT DATA FROM THE ORIGIN .. 62

FIGURE 32 RUNTIME STATS EXPOSED BY ASG-RUNTIME ON BEHALF OF SFDPS 65

FIGURE 33 AUTOMATION SUBSYSTEM DEPLOYMENT VIEW ... 67

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 7 of 76

LIST OF TABLES

TABLE 1: PROMETHEUS SYSTEM RESOURCE MONITORING METRICS 30

TABLE 2: KEPLER METRICS FOR ENERGY AND SUSTAINABILITY MONITORING 31

TABLE 3: EXAMPLES OF ISTIO SERVICE MESH OBSERVABILITY METRICS 31

TABLE 4: COMPARISON OF THE LOCAL INFERENCE TOOLS AND FRAMEWORKS 45

TABLE 5: CACHE BACKENDS CONSIDERED FOR INCLUSION ... 55

TABLE 6: OPTIONS FOR VALIDATING FDP DATA FRESHNESS ... 57

TABLE 7: CACHE BACKEND CONFIGURATION .. 64

TABLE 8 : EXAMPLE STATS-TO- METRICS MAPPING .. 66

TABLE 9 : OPTIONS FOR INTEGRATING THE TELEMETRY PIPELINE 66

TABLE 10 : ADAPTING SDLC TO WORK WITH ASG .. 72

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 8 of 76

ABBREVIATIONS

AI Artificial Intelligence

AI-DPM AI-driven Performance Monitoring

AIOps Artificial Intelligence for Information Technology (IT) Operations

ASG Automatic sFDP Generation

API Application Programming Interface

BPMN Business Process Model and Notation

CD Continuous Delivery

CI Continuous Integration

CRD Custom Resource Definition

DAG Direct Acyclic Graphs

FDP Federated Data Product

GRU Gated Recurrent Units

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IdM Identity Management

IT Information Technology

I/O Input / Output

JWT JSON Web Token

K8s Kubernetes

KPI Key Performance Indicators

LLM Large Language Model

LSTM Long Short-Term Memory Neural Network

MCC-C Multi-cloud Computer Compiler

MCP Model Catalog Platforms / Model Context Protocol

ML Machine Learning

OIDC OpenID Connect

OPA Open Policy Agent

PoC Proof-of-concept

PromQL Prometheus Query Language

RBAC Role-Based Access Control

REPL Read-Eval-Print Loop

REST REpresentational State Transfer

SDLC Stretched Data Lake Compiler

SFDP Shared Federated Data Product

TEE Trusted Execution Environment

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 9 of 76

TTMs Tiny Time Mixers

YAML Yet Another Markup Language

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 10 of 76

1. INTRODUCTION

In an increasingly data-driven world, the ability of organizations to securely and efficiently
collaborate across infrastructure and institutional boundaries is becoming a strategic
imperative. From scientific research to smart manufacturing and public services, data is both
the fuel and the product of digital operations. However, the realities of distributed
infrastructures, heterogeneous technologies, and complex governance models often make
cross-organizational data integration costly and brittle. The TEADAL project addresses this
challenge by introducing a principled architecture in WP2 (see deliverables D2.1 [1], D2.2
[1][2], D2.3 [3], and the upcoming D2.4 [3][4]), and platform design in WP6 (see deliverables
D6.1 [5] and D6.2 [6]) for the concept of federated data sharing that prioritizes trust, policy
compliance, and operational efficiency.

At the heart of this vision is the concept of the Federated Data Product (FDP): a shareable,
API-exposed data interface encapsulating a dataset maintained by an individual organization.
FDPs are designed to respect local autonomy, security, and domain-specific control. Yet, to
fully enable cross-organizational data reuse, TEADAL introduces a complementary concept,
the Shared Federated Data Product (SFDP). SFDPs act as intermediaries: policy-enforced,
transformed, and traceable views of underlying FDPs, accessible across organizational
boundaries.

The broader TEADAL platform operationalizes this architecture using Kubernetes-based
deployments, GitOps-style control, and declarative specifications. In this way, data flows
become programmable, inspectable, and composable. Moreover, AI-powered monitoring and
LLM-assisted development tools further reduce the barriers to adoption and help manage the
complexity inherent in federated data landscapes.

This document reports on the final design and implementation of the technical components
delivered as part of Work Package 4 (WP4). WP4 focuses specifically on the realization and
governance of cross-organizational data flows, originally described as "stretched data lakes,"
and now more concretely implemented as runtime-deployable SFDPs. These contributions are
designed to integrate seamlessly with the other TEADAL services (notably AI-DPM and Control
Plane) and to serve the needs of pilot users across various domains. The following subsections
provide a more detailed orientation to the objectives and structure of this report.

1.1 PURPOSE AND SCOPE

This report consolidates the software, design decisions, and implementation outcomes of WP4
within the TEADAL project. It covers three major innovations:

- The design and delivery of an AI-driven Performance Monitoring subsystem (AI-DPM),
which collects and analyses operational data (e.g., performance, energy consumption)
to guide infrastructure-aware deployment decisions.

- The development of an Automatic SFDP Generation (ASG) subsystem, which assists
developers in specifying, generating, and executing SFDPs with the help of LLM-based
tools and a shared runtime library.

- The updates and finalization of the TEADAL control plane’s optimization and
deployment subsystems, that use declarative specifications and monitoring feedback
to select appropriate deployment targets and manage the lifecycle of SFDPs across
the federation.

In addition to reporting on each component, the document explores their integration into the
TEADAL architecture, their application in real-world pilot deployments, and their contribution
to achieving the TEADAL project's requirements.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 11 of 76

1.2 CONTEXT: TOWARDS DECLARATIVE CONTROL OF THE AI-
POWERED DATA PLATFORM

Our approach to Stretched Data Lakes and Control Plane reflects on and supports the
important architectural decisions made as part of TEADAL:

1. Declarative control: Right from the beginning, TEADAL has selected Kubernetes as
its underlying infrastructure controller. In WP4, we support this choice by leveraging
the declarative Kubernetes control plane and its ability to define Custom Resource
Definitions (CRDs) for implementing domain-specific capabilities. In addition, we
reinforce this declarative approach through the ASG subsystem, which enables data
users to specify "what" data products should do rather than "how" they should be
implemented. As a result, SFDP creation becomes a largely hands-off, declarative
process. The resulting SFDPs are standardized microservices that fit seamlessly into
the Kubernetes-based control plane, ensuring modularity, automation, and reuse as
part of the TEADAL Platform.

2. Federated trust and control: According to the TEADAL Architecture, each
organization maintains sovereignty over its data and its FDPs, while the TEADAL
platform ensures cross-cutting enforcement of data-sharing agreements. In WP4, we
support this principle by creating SFDPs as standardized microservices that can
leverage the same policy management and enforcement mechanisms developed for
FDPs. Furthermore, our implementation of data transformation pipelines within SFDPs
enables runtime policy controls, for example, by injecting concrete implementations of
generic transform functions based on deployment context.

In addition to the above, our approach has evolved to adopt the emerging trend of applying AI
for managing distributed infrastructures and supporting data engineering workflows.

AI and LLM integration: TEADAL embraces the growing role of AI in managing complexity
across distributed data infrastructures. On the operational side, AI-driven observability and
optimization, commonly known as AIOps, are used to monitor and control deployments based
on real-time infrastructure conditions. In TEADAL, this is embodied in the AI-DPM subsystem,
which applies AI models to performance and energy data to guide intelligent deployment
decisions. On the development side, the rise of Large Language Models (LLMs) is transforming
the way users interact with complex technical stacks. TEADAL’s ASG subsystem explores how
generative AI can be leveraged to automate key aspects of Shared Federated Data Product
creation, including endpoint specification, transformation chaining, and runtime deployment
configuration. This allows developers to work at a higher level of abstraction, using natural
language prompts or assisted templates rather than manually writing code and YAML
specifications, reducing the skill threshold for developers and accelerating the creation of
SFDPs that conform to both technical standards and policy constraints. Together, these AI-
enhanced capabilities position TEADAL at the forefront of intelligent, federated data platform
design.

Emerging alignment with Model Context Protocol and Model Catalog Platforms (MCPs):
An emerging direction, particularly relevant for the ASG subsystem, is the potential alignment
with Model Context Protocol1 and the Model Catalog Platforms powered by this protocol.
Originally designed for sharing and managing AI/ML models, Model Catalog Platforms are now
evolving to support broader ecosystems of reusable, composable assets, including data
transformation methods, pipelines, and APIs. By adopting the open Model Context Protocol,
created to enable seamless integration between LLM applications and external data sources

1 Model Context Protocol · GitHub

https://github.com/modelcontextprotocol

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 12 of 76

and tools, TEADAL could expose its transformation library as a searchable, machine-readable
catalog. This would not only improve human usability and model-assisted discovery but also
position TEADAL to integrate with other tools that rely on MCP conventions. As generative AI
systems increasingly rely on structured interfaces to invoke external capabilities (e.g., tools,
functions, plugins), MCP-style publication of TEADAL transformations could help unlock AI-
powered orchestration and semi-automated data engineering. While still exploratory, this
direction promises to reinforce TEADAL’s commitment to openness, modularity, and future-
ready design.

1.3 DOCUMENT STRUCTURE

The remainder of this document is organized as follows:

- Section 2, Stretched Data Lakes, provides an overview of how the initial "stretched data
lakes" concept has evolved into the modular, modern, declarative, and runtime-oriented
architecture presented in this report. In addition, this section presents the platform
integration aspects of the WP4, including the Catalogue flows involved in SFDP creation
and the RBAC integration.

- Section 3, The Monitoring Subsystem (AI-DPM), describes the monitoring subsystem of
TEADAL Control Plane, an AI-driven performance monitoring (AI-DPM). The section
presents the AI-DPM components, the data they collect, the algorithms they use, and the
insights they provide for other Control Plane subsystems, such as runtime observability
and optimization.

- Section 4, The Automation Subsystem (ASG), presents the automation aspect of the
TEADAL Control Plane, an ASG subsystem. The section discusses the benefits of applying
generative AI for automating data access and processing and describes the ASG
subsystem including its design rationale, tooling, software architecture, and deployment
model.

- Section 5, The Optimization and the Deployment Subsystem, iterates on the control plane
aspects that were already presented in prior deliverables of this work package while
refining them to be in line with the updated WP4 architecture and technology stack of the
TEADAL Node in its finalized form.

- Section 6, Summary, concludes the document with a summary of the work performed, its
integration with other work packages, and contributions to TEADAL's goals and validation
KPIs. In addition, we outline the roadmap to impact, and present possible directions for
follow up research.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 13 of 76

2. STRETCHED DATA LAKES

This section presents the architecture developed in WP4, explaining both how it supports key
TEADAL project requirements ([2][3][4]) and how it integrates with the TEADAL platform
([5][6]). WP4’s contributions are centered on automated creation of SFDPs according to data
sharing contracts negotiated between the FDP Consumers and the FDP Providers, as well as
on the deployment and the runtime management of the generated SFDPs.

2.1 REVISITING THE “STRETCHED DATA LAKES” CONCEPT

The term “stretched data lakes” was originally introduced during the early stages of project
planning, with the intention to encapsulate challenges related to creating, deploying, and
managing data flows and data transformation and processing pipelines across distributed and
heterogeneous infrastructure environments. It was planned that “stretched data lakes” will
establish the data lakes functionality for organizations participating in TEADAL Federations,
while the challenges related to data sharing across organizations will be addressed by other
work streams concerned with the federation aspects, such as trust plane, policy plane, etc.
With time, this approach morphed into the need to view the “stretched data lakes” as something
that can transparently control data flows and data pipelines both for cases of a single
organization managing data across its own multiple distributed environments (the original,
“stretched” data lakes) and also for cases where multiple organization deploy and share data
across federation of such distributed environments.

While the concept of Shared Federated Data Products (SFDPs) was introduced to enable
trusted cross-organizational data sharing, it also offers an opportunity to address the
infrastructure-related challenges that would arise from exposing Federated Data Products
(FDPs) directly. As part of our work on the TEADAL Stretched Data Lakes and its Control
Plane, we have leveraged this opportunity to develop a complete toolchain for the creation and
lifecycle management of SFDPs.

As a result, the “stretched data lakes” concept has evolved within WP4 into a more precise
technical vision: the dynamic deployment, management, and execution of shared federated
data pipelines across multiple organizational boundaries and across different TEADAL Nodes.
This vision materializes primarily through separating the required functionality into four key
subsystems of the TEADAL control plane: the monitoring subsystem for collecting,
analysing, and externalizing the runtime performance data, the automation subsystem for
automated creation and controllable execution of SFDPs, the optimization subsystem for
selecting the deployment targets for SFDPs, and the deployment subsystem for ensuring the
SFDP is deployed on a selected target and managing its runtime execution and lifecycle.

WP4's control-plane-oriented contributions have significantly shaped TEADAL’s capacity to
operationalize core concepts such as FDPs (Federated Data Products) and sFDPs (Shared
Federated Data Products), making the automated process of FDP-to-SFDP creation a
cornerstone of the federation’s practical data-sharing capabilities. To set the context, we first
briefly summarize TEADAL architectural concepts most relevant to WP4:

- Federated Dataset Exposure whereby organizations expose internal datasets
through RESTful APIs known as Federated Data Products (FDPs). These endpoints
encapsulate access control, metadata, and discovery logic and are designed to be
published in a shared TEADAL Catalogue.

- Data Sharing via sFDPs, enabling one organization to re-share or transform data
obtained from another organization's FDP. This capability supports the “negotiated
access” model across federations and decouples data provisioning from local
organizational control.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 14 of 76

- Runtime Automation and Discoverability with GitOps, where declarative
configurations are stored in Git repositories and used by argoCD daemons to manage
the lifecycle of FDPs and sFDPs on TEADAL Nodes.

- Decentralized Policy Management allowing identity and access control to remain
under local organizational policies while FDPs and sFDPs are deployed across all the
Nodes in TEADAL Federation. This way data sovereignty is ensured with no centralized
data broker required at runtime, avoiding centralization wherever possible.

FIGURE 1 CONTROL PLANE COMPONENTS IN SFDP PRODUCTION AND USAGE

2.2 STRETCHED DATA LAKES ARCHITECTURE

WP4 architecture, with its four subsystems, is aligned with the principles listed above and,
in addition, supports reproducibility, auditing, and automation of TEADAL Infrastructure
and data products deployed on it. The monitoring subsystem acts as runtime planning
assistant to the optimization subsystem that selects the deployment targets, the automation
subsystem helps users in generating compliant transformation plans, automatically
synthesizing sFDPs, and ensuring their compliance with their specifications at runtime.
This architecture allows the deployment subsystem to be very simple with the only
requirement to support the deployment of the ready to go SFDPs with their deployment
manifests to the selected TEADAL Nodes.

Figure 1 presents the conceptual overview of the main control plane subsystems as part
of simplified outlook on TEADAL Federation and shows, step-by-step, how these

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 15 of 76

subsystems contribute to the end-to-end FDP-to-SFDP production and usage processes,
helping to serve the needs of TEADAL actors:

1. FDP Consumer (a TEADAL actor defined to represent an organisation of the federation
that searches for an FDP and negotiates the agreement to access it as SFDP), looks up
the Catalogue and selects the FDP its organization needs access to.

2. The Catalogue notifies the FDP Provider (a TEADAL actor defined to represent an
organisation of the federation with the right to access and share data; inside its
organization, FDP Provider communicates to additional actors, the FDP Developer, and
the FDP Designer) and initiates a process between the FDP Consumer and the FDP
Provider to negotiate the terms and to specify the SFDP details.

3. As soon as the contract and the specification are ready, FDP Provider notifies Catalogue
that the FDP-to-SFDP creation process can proceed to its next stages.

4. Next stage of the FDP-to-SFDP creation process invokes the automation subsystem of the
TEADAL control plane to create the SFDP as a k8s-deployable server application.

5. When k8s-deployable server application is created, the control plane optimization
subsystem is invoked to select the preferable deployment target for this SFDP, in this
example, Node B. This is done ‘in consultation’ with the monitoring subsystem that collects
runtime information about the federation’s Nodes and their workloads.

6. After the target TEADAL Node is selected, the control plane deployment subsystem is
requested to take care of deployment on Node B.

7. Control plane deployment subsystem ensures Node B’s k8s control plane realizes the
deployment of SFDP as a new service.

8. Catalogue is notified of the new SFDP readiness and finalizes the FDP-to-SFDP creation
process, e.g. by notifying the involved agents.

9. As a result, users in FDP Consumer’s organizations can access the newly created SFDP
and request the data.

10. From now on, SFDP serves data requests to its users while making data requests to its
source FDP and transforming the fetched data according to the SFDP specification. At
runtime, this is enabled by the automation subsystem of the control plane as explained in
detail in Section Error! Reference source not found..

Note that Figure 1 simplifies the presentation by not showing internal details of the above steps
and by referring to only one TEADAL component other than control plane proper, the
Catalogue. Additional TEADAL Platform subsystems and services play crucial roles in this
process, e.g. for policy definition, k8s manifests creation, runtime policy enforcement, GitOps,
etc.

2.3 SUPPORTING TEADAL REQUIREMENTS

From project wide business-level perspective, the motivations behind the SFDP concept are:

- facilitate internal data-sharing agreements without altering source systems

- provide governance, and traceability for reused data flows

- act as policy-compliant "middleware" between FDP Consumers and FDP Providers

- reduce time-to-data and development effort for data for FDP Consumers

At the work package level, we translate these motivations into a set of system-level objectives:

- enforce data-sharing contracts at the API level

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 16 of 76

- apply required data transformations and policies before exposure

- preserve auditable boundaries between data ownership and consumption

- decouple FDP Consumers from the technical and semantic complexity of data sources

- represent transformed/contractual APIs as reusable, discoverable data products

Below we demonstrate how architectural contributions presented in the previous subsection
align with and help addressing the architectural and the operational requirements specified
across the TEADAL project in D2.2 [2]:

1. Enabling Dynamically Prepared Shareable Data (Req. 1.a in D2.2 [2])

WP4 work provides the concrete mechanisms to instantiate sFDPs as dynamic, deployable
services. With TEADAL Platform’s approach to declarative definitions, GitOps-based
automation, and a Kubernetes-native control plane, TEADAL pipelines can be automatically
materialized in accordance with organization-to-organization agreements. The automation
subsystem facilitates this dynamic instantiation of sFDPs by combining transformation logic
with access policies and endpoint specifications.

By treating sFDPs as deployable units tailored to specific sharing contexts, WP4 ensures that
data sharing is both compliant with federated governance rules and adaptable to evolving
requirements.

2. Simplifying Data Lake Management (Req. 1.b in D2.2 [2])

Rather than adopting a narrow “serverless” framework, WP4 advances the spirit of serverless
computing by embracing declarative orchestration, GitOps workflows, and automation of
routine operations. This approach relieves users from the burden of manually provisioning,
scaling, or debugging services, instead enabling them to express intent at a higher level (e.g.,
"this dataset should be made available via this transformation, with these access rules"),
allowing the TEADAL control plane to effectively abstract the operational complexity of multi-
cluster infrastructure and aligning well with the goal of simplifying data lake management.

3. Supporting Data Discovery (Req. 1.d in D2.2 [2])

While responsibility for implementing the Data Catalogue mostly belongs to other work
packages, WP4 ensures compatibility and interoperability with it. The automation and the
deployment subsystems anticipate integration with the Catalogue for dataset and pipeline
publication and discovery, as well as for triggering the SFDP generation and deployment
processes. While architecturally, the monitoring and the optimization subsystem are internal
to the control plane, their integration to ‘actor-facing’ components such as Catalogue can be
beneficial in the future, e.g. for providing federation-wide observability and allowing actors to
affect optimization goals and parameters. In addition, ongoing exploration into aligning
transformation components with Model Catalog Platforms (MCPs) and Model Context
Protocol, mentioned in Introduction and further explained in next sections, has a potential to
further reinforce WP4's alignment with TEADAL’s broader discoverability objectives.

4. Reducing Data-Sharing Friction (Req. 2.a in D2.2 [2])

WP4 directly addresses friction in federated data sharing by helping to automate SFDP
negotiation and generation, and by taking care of runtime compliance of SFDP to its negotiated
specification. The automation subsystem is created as a framework that captures sharing
agreements and data transformations as structured, versioned, and reproducible templates,
dramatically lowering the coordination and integration overhead typically required when
bridging organizational boundaries. Monitoring and optimization subsystems contribute by

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 17 of 76

streamlining the planning phase of data sharing, helping to generate appropriate
configurations, exposing relevant constraints, and aligning local and federated policies. This
design aligns well with work done in WP3 for transforming the abstract concept of “data-sharing
friction” into a solvable engineering challenge.

5. Managing Data and Computation Placement (Req. 2.b in D2.2 [2])

Through the control plane, WP4 introduces mechanisms to flexibly schedule and deploy data
pipelines close to data sources or downstream consumers, depending on cost, policy, or
performance considerations. This elasticity directly supports the architectural goal of stretching
the data lake across the computing continuum, optimizing placement of data and computation.
With declarative pipeline definitions and cluster-aware deployment assisted by the telemetry
(e.g., cost, latency, energy) implemented by the monitoring subsystem, TEADAL control plane
design lays the groundwork for intelligent workload scheduling across the federation.

6. Contributing to Energy-Aware Orchestration (Req. 2.c in D2.2 [2])

Although energy modelling is addressed in another work package, WP4 provides the practical
foundation needed to implement these models. The deployment subsystem, through
declarative labels and telemetry provided by the monitoring subsystem that already collects
some energy-related metrics, can implement the energy goals as part of selecting execution
targets. The automation subsystem contributes by enabling the runtime selection of
transformations the data goes through as part of the FDP-SFDP pipelines, based on how much
energy each specific implementation of the given transformation requires. Additional well-
known energy saving strategies, such as scaling deployments to zero when idle, and
orchestrating transformations in energy-efficient locations, can be integrated in production
systems. Future full integration with energy-aware metrics will empower TEADAL to act on
optimization strategies in real-time, completing the feedback loop between analysis and
execution.

Across all the above requirements, WP4 helps “operationalizing” TEADAL’s architectural vision
and SFDP concept, while integrating with other work packages` outcomes, such as Catalogue,
operational models (data friction, data gravity, performance and policy modelling), policy
definition and enforcement tooling, trust subsystems, etc. WP4’s realization of the "stretched
data lake" concept is created to ensure those ideas can be instantiated, managed, and evolved
in real-world deployments and help positioning TEADAL as a pioneering effort in distributed,
automated, and trustworthy data collaboration.

2.4 REALIZATION AND PLATFORM INTEGRATION

The TEADAL Platform, conceived at the architectural level in WP2 ([2][3]) and realized in WP6,
has been evolving throughout the project. At the time of writing this deliverable, the TEADAL
Node exists as capable and production-ready platform ready to be installed and supporting a
range of enabling technologies and services:

- GitLab CI/CD and Argo CD for GitOps-driven automation,

- OPA (Open Policy Agent), Rego, and Keycloak for secure identity management,

- Istio for fine-grained policy enforcement,

- Prometheus, Thanos, Kepler, and Grafana for federated observability and resource
monitoring.

The Stretched Data Lakes components described here have been designed to be compatible
with this curated TEADAL technology stack and to interface with the broader TEADAL platform
architecture, leveraging and respecting project-wide decisions and technology choices, e.g.:

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 18 of 76

- Reliance on k8s control plane for in-cluster orchestration and placement: WP4
assumes that, with respect to control plane, TEADAL Nodes are k8s environments.
Thus, there is no dedicated in-cluster runtime “control plane”; instead, this is handled
by standard k8s operators within each organizational cluster extended by additional
CRDs.

- Reliance on GitOps for realizing the deployments: WP4 assumes that, with respect to
managing deployments, TEADAL Nodes are enabled with cluster-scoped GitOps
tooling via Argo CD that can be leveraged for executing the deployments after the
deployment target (as TEADAL Node) is selected by the optimization subsystem).

- Reliance on TEADAL Data Catalogue to coordinate the FDP-to-SFDP creation process
starting from the FDP Consumer requesting access to a certain FDP and complete with
the data users from the FDP Consumer’s organizations successfully access the data.

- Reliance on TEADAL tooling for policy definition, specification and enforcement.

Whenever feasible, WP4 components are integrated with the foundational services of the
TEADAL Node, as explained in the following sections. Some components were created and
demonstrated well before the TEADAL stack existed in its final state and need to be further
adapted before their full integration. For example, the Multi-Cloud Computer Compiler (MCC-
C) is not yet fully integrated at the time of writing this deliverable. We plan to complete the
integration at the extent possible till the end of the project and in scope required to support
major use cases related to multi-cluster (multi- TEADAL Node) federations. Integration status
of WP4 components is as follows.

- The monitoring subsystem is integrated into TEADAL Nodes (see Section 3).

- The automation subsystem consists of several components and services, some fully
integrated to TEADAL Nodes while some are expected to be run in development
environments of FDP Developers/Designers (see Section 4).

- The optimization subsystem, as explained above, is not fully integrated yet but is
integration ready in principle as it was developed to consume labelled descriptors of
both workloads (e.g., sFDPs) and the infrastructure nodes (e.g., cluster capabilities)
and to output placement suggestions (see Section 5).

- The deployment subsystem was initially planned to rely on Kubestellar to orchestrate
deployments and state synchronization across TEADAL Nodes based on optimization
subsystem’s output. However, this direction was abandoned mid-project as attention
shifted toward AI-driven planning and automation and as the multi-cluster orchestration
landscape has matured significantly, with numerous additional open-source and
commercial solutions now available to manage cross-cluster workloads, policies, and
data movement (see Section Error! Reference source not found.).

Catalogue-centered Views for SFDP Creation

To complete our explanation of the data-sharing process, this section presents the Catalogue-
centered perspective on the creation and governance of SFDPs in TEADAL. Full description
of Catalogue architecture and its interfaces can be found in D3.3 [10].

The TEADAL Catalogue is a web application that employs Business Process Model and
Notation (BPMN), a standard for defining workflows that involve human and system activities,
to coordinate multi-step actions. BPMN workflows are visually defined and executed by a
workflow engine, but users only interact with them indirectly, via buttons, forms, or automatic
notifications in the Catalogue UI (see Figure 2). This ensures that even complex coordination
across federated organizations remains user-friendly and traceable. The Catalogue defines
and manages the following types of data-sharing assets:

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 19 of 76

• Dataset: A local asset that describes a data source (e.g., file, URL, database table, S3
bucket) and its associated metadata. A Dataset is visible only within the organization
that owns it.

• Federated Data Product (FDP): A public-facing service description built on one or
more Datasets. It includes technical access information and data-sharing policies.
FDPs are visible across the federation.

• Shared Federated Data Product (sFDP): A customized data product instance created
to fulfil a specific access request from another organization.

• Agreement: A recorded outcome of a negotiation process that documents the terms
and results in the creation of an sFDP.

FIGURE 2 CATALOGUE – UI VIEW

When a user belonging to a federated organisation (FDP Consumer) discovers an interesting
FDP via the Catalogue, they can initiate a data access negotiation process, also via the
Catalogue. This triggers a BPMN workflow that takes care of informing the owner of the FDP
(FDP Provider) about the access request and, optionally, supports the structured information
exchange between the actors while negotiating, presented in Figure 3.

FIGURE 3 CATALOGUE – CONTRACT REQUEST PROCESS

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 20 of 76

When the negotiation process is successfully finished, two things happen:

• The owner of the FDP creates a Shared Federated Data Product (sFDP) to allow the
requester access to the FDP data according to the policy that has been negotiated
between the parties. The sFDP is then described in the Catalogue and linked to its FDP

• The BPMN process that regulates the information exchange between FDP owner and
the federated user asks the FDP owner to state the identifier of the newly created sFDP,
sends such details to the requester, and then creates an Agreement object in the
Catalogue. The Agreement object just records that an sFDP has been created as a
reaction to a request by a specific user related to an FDP.

As a result, the FDP owner maintains visibility over all derived sFDPs and the reasons they
were created. Moreover, as the Catalogue allows binding BPMN processes to asset types, we
can handle contract termination. When inspecting an Agreement object, both parties can
decide to terminate the data sharing agreement via a button that triggers a custom BPMN,
presented in Figure 4.

FIGURE 4 CATALOGUE – AGREEMENT TERMINATION PROCESS

All the events in the interactions described above are also tracked in the Advocate tool. Such
tracking is implemented via service tasks in the BPMN processes that have been created to
support the use cases. As a result, there’s always evidence about any actions regarding
Datasets, Federated Data Products and Shared Federated Data Products, related both to their
lifecycle management and their usage by other users in the federation.

In addition to user-driven interactions through the Catalogue web UI, the TEADAL Catalogue
also exposes a set of APIs that enable automated workflows and programmatic access to
catalog functions. This allows internal services, CLI tools, or external platforms to interact with
catalog assets (e.g., initiate access requests, create FDPs/sFDPs, or register agreements)
without requiring manual UI steps. By supporting both UI and API-based interactions, the
Catalogue accommodates a wide range of needs, from exploratory workflows to fully
automated data sharing pipelines. The Catalogue exposes API methods supporting the
following operations:

• CRUD operations on assets

• Sending notifications to users or groups of users

• Asset status management

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 21 of 76

• Listing of assets types and their JSON Schema for validation purposes

• Performing controlled SPARQL queries as explained in D3.3

• Creating and managing User Requests, a system heavily inspired by ticketing that
allows capturing user requests and linking them to the execution of BPMN processes

FIGURE 5 PROCESS COORDINATION THOUGH CATALOGUE UI AND API

Figure 5 presents a possible way to leverage Catalogue’s ability to coordinate complex user
flows both through the UI and through the API. In Figure 5, the SFDP creation flow, typically
initiated by human actors using the UI, can proceed through automation steps involving other
TEADAL components invoked by the or on behalf of the FDP provider. For example, ASG-tool
is invoked to create the SFDP app and initial artefacts, followed by the policy generation, the
deployment target selection, and the deployment. To maintain end-to-end integrity of this
operation, components and tools can use the Catalogue API programmatically, to inform about
the stages the request is going through and to notify the Catalogue about SFDP readiness.

From auto-generated SFDPs to running services

Control plane automation subsystem has a tool for auto-generating the SFDP server apps and
a library for supporting the autogenerated SFDPs at runtime (see Section 4). In between, after
the SFDP server app is generated and before it is accessible on its preferred TEADL Node,
several further steps are taken by a broader TEADAL platform:

• Create YAML manifests for describing the required k8s resources

• Create kustomize files for firing the argoCD pipelines

• Create Rego files for encompassing the policies related to the SFDP access

• Optionally, annotate these artifacts with the runtime annotations, when for example the
SFDP can benefit from running on GPU nodes or requires to be run in the trusted
environments

• Select the deployment target for the new SFDP, among the TEADAL Nodes existing in
the Federation (this is handled by the optimization subsystem of WP4 and is included
here for completeness)

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 22 of 76

• Deploy the new SFDP on the selected deployment target and initiate its runtime
monitoring (this is also by handled by WP4 subsystems and is included here for
completeness)

Following these steps, the Catalogue can be notified to complete the SFDP creation flow by
publishing the new data product and alerting the FDP Consumer that have initiated the request
for this new SFDP.

Role Based Access Control (RBAC) Framework

While the framework outlined in detail in D4.2[8] can be used to enforce any kind of access
control, a setup was developed for TEADAL that also provides a built-in Role-Based Access
Control (RBAC) framework. This framework dramatically reduces the effort needed to
implement access control for RESTful services, while still leaving policy writers the freedom to
extend the base framework with service-specific functionality.

Data lake users are managed through a federated, OpenID Connect or OIDC-compliant
Identity Management (IdM) service. Consumer services act on behalf of users who have
proved their identity through IdM-configured procedures such as credential challenges, multi-
factor authentication, etc. Upon successful authentication, the IdM issues an identity token,
more specifically a JSON Web Token (JWT), which certifies the user's identity. Consumer
services attach the token to each data product service request by means of the Bearer HTTP
Authorization header. Presently, TEADAL deploys Keycloak as an IdM service, although any
other OIDC-compliant software could be used too as the RBAC framework only requires OIDC-
compliance, making no assumption about the actual IdM implementation.

RBAC roles, users and policy rules are written in plain Rego. Thus, policy writers are
empowered with a fully-fledged programming language which they can exploit to customize,
abstract and reuse their roles and policies to an extent that is simply not possible with
traditional, configuration-based, cloud Identity and Access Management solutions. Moreover,
policy writers can implement automated Rego tests to verify their policies have the desired
effect when evaluated or even do that interactively, for rapid prototyping, as the OPA runtime
has both test and read-eval-print loop (REPL) facilities. Extensive, automated tests also
prevent regression issues where modifying a rule may have an unforeseen, unwanted side-
effect, possibly leading to a security incident. Again, this level of sophistication is extremely
expensive, in terms of the required effort, to attain with traditional Identity and Access
Management solutions.

The TEADAL “authnz” Rego library is a good case in point. Policy writers import this library in
their code to automatically handle the evaluation of RBAC rules, user authentication, JWT
validation, OIDC discovery as well as cryptographic keys download, verification and caching.
The library allows policy writers to concentrate on defining their own, service-specific access
control rules using an intuitive format.

For example, consider securing a simple FDP. The REST service exposes patient records as
Web resources. There are three paths:/patients to list and add patients, /patients/id/ to retrieve
and delete a particular patient, and /patients/age to retrieve a list with the ID and age of each
patient but nothing else. Also, there is a /status path which returns the current service status.
We would like to define two roles. A product owner, which should be able to perform a GET,
POST and DELETE on any URL path starting with /patients, and a product consumer, which
should only be allowed to GET patient ages and service status. Moreover, we would like to
assign both the product owner and consumer roles to the user identified by the email of
jeejee@teadal.eu whereas just the product consumer role to the user identified by the email
of sebs@teadal.eu. In the TEADAL RBAC framework, all the above can be accomplished with
the Rego code presented in Figure 6.

https://openid.net/developers/how-connect-works/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6750
https://www.keycloak.org/

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 23 of 76

FIGURE 6 EXAMPLE REGO CODE FOR SECURING AN FDP

To evaluate our RBAC rules against the request received from Envoy, we would simply import
the TEADAL “authnz” library and call its allow function as exemplified by the Rego code snippet
in Figure 7, where we tacitly assume the RBAC rules defined earlier are in a package imported
as rbac_db.

FIGURE 7 METHOD FOR EVALUATING RBAC RULES AGAINST THE REQUEST

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 24 of 76

As already mentioned, “authnz” automatically handles the evaluation of RBAC rules, user
authentication, JWT validation, OIDC discovery as well as cryptographic keys download,
verification and caching. Also of note, “authnz” provides built-in functions to evaluate user-
defined RBAC rules interactively in the Rego REPL. This is useful for dry-run scenarios where
a policy writer may want to see what the effect of their RBAC rules is before deploying them to
the data lake.

In the previous example, roles are defined in Rego along with the mapping of users to roles. It
is also possible to define roles in the IdM where users are kept and use the IdM's tools to
associate users with roles. In this case, the Rego policy can be simplified to contain the
role_to_perms map associating each role defined in the IdM to a list of permission objects as
shown in Figure 8.

FIGURE 8 REGO POLICY EXAMPLE FOR ASSOCIATING PERMISSIONS WITH ROLES

This Rego code defines a policy that has the same effect as that presented earlier where users
were explicitly associated with roles through the user_to_roles map.
A mixed scenario is also possible, where some roles are defined in the IdM and others in Rego
policies but regardless of the approach, if some (or all) roles are managed in the IdM, then:

• the IdM must generate access tokens that include not only the authenticated user's ID,
but also a list of roles the user belongs to; and

• “authnz” must be configured to read both the user ID and the roles from the access
token.

In this setup, “authnz” merges any roles extracted from the token with the roles defined for that
user in Rego. For added convenience, “authnz” treats each user as a singleton role. More
precisely, “authnz” identifies every user “u” with a role named “u”, which contains only “u” as
its member. For example, the user sebs@teadal.eu from the previous example implicitly has
a corresponding role also named sebs@teadal.eu, with the user as its sole member. These
implicit singleton roles allow policy writers to assign permissions directly to a user in the
role_to_perms map, without needing to explicitly list the user as an additional role in the
user_to_roles entry for that user.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 25 of 76

For example, suppose the policy writer wants to extend the previous policy with a rule specific
to the user sebs@teadal.eu. As a product consumer, sebs@teadal.eu does not have access
to service metrics. Without implicit singleton roles, the policy writer would need to manually
add an entry to user_to_roles to associate sebs@teadal.eu with a role of the same name, in
order to then add a corresponding entry for role sebs@teadal.eu to the role_to_perms map,
as shown in Figure 9.

FIGURE 9 EXAMPLE OF NOT USING IMPLICIT SINGLETON ROLES

While this works, it is cumbersome and places an additional burden on the policy writer—
especially when roles are managed externally in an IdM system. Ideally, in such cases, the
policy writer should only need to specify the role_to_perms map, without also maintaining the
user_to_roles map. With implicit singleton roles, there is no need to explicitly map users to
roles of the same name. The policy writer can simply rewrite the code as shown in Figure 10:

FIGURE 10 EXAMPLE OF USING IMPLICIT SINGLETON ROLES

Policy Writing and LLM assisted Policy Generation and Bundling

While the RBAC framework provides a way to set up policies in relation to an OIDC compliant
IdM, OPA (and consequently the Rego language) provides a lot more flexibility in defining
policies. Multiple Rego files, defining complex policies that make very in-depth checks against
a variety of data, can be packaged together into a bundle. This bundle can be deployed directly
alongside OPA, or deployed elsewhere, with OPA configured to pull the bundle dynamically.
This would enable policies to be updated and enforced continuously.

For this reason, we have experimented with a “Policy Editor” web app that enables authorized
users to write and edit arbitrary policies and bundle them at once.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 26 of 76

FIGURE 11 AUTHORING POLICIES IN THE “POLICY EDITOR” WEB APP

The policies authored in the app, e.g. as shown in Figure 11, once bundled, will automatically
be picked up by OPA and thus enforced by it. Being a web app, it can easily be accessed by
any browser. Only authorized users (with an account created for them) can access the editor
and make changes to the policies. Because it allows for plain (valid) Rego code, it provides full
flexibility on how the policies are written, be it simple checks on web token contents, or more
complex API calls that can pull additional data to be used in formulating the policies.

Moreover, albeit in a very experimental way at this stage, the Editor also provides a way to
generate Rego policies from natural language descriptions by leveraging AI. Figure 12
presents the view where the user inserts the name and the description of the policy to be
generated and Figure 13 presents the view where the app displays the generated policy that
user can inspect, manually edit, and, eventually, use.

FIGURE 12 POLICY EDITOR – POLICY GENERATION REQUEST VIEW

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 27 of 76

This is done by forwarding the description of the Policy to a middleware API, which in turn will
interact with a configured LLM (either locally with Ollama available as part of TEADAL Nodes,
or remotely towards one of the large models such as Gemini, Claude, GPT4.1, etc.). The API
is configured to provide context for Rego code generation for OPA and, optionally, can be
configured to interact with Model Context Protocol (MCP) servers. These can provide further
specific context to the interactions with the LLMs, as well as tools that could enable the models
to take some actions directly. While still a work in progress, there is the possibility to leverage
this protocol to provide real time information on the state of a system that requires policies,
allowing the AI to dynamically refer to it and generate meaningful relevant policies, streamlining
the process.

FIGURE 13 POLICY EDITOR – POLICY GENERATION RESULT VIEW

Note that a more structured and mature model driven approach to policy generation is fully
presented in D3.3[10]. The LLM-based approach presented here is ultimately an exploration
of alternative ways to assist the users in generating meaningful policies based on existing
contextual data. The Policy Editor Web Application is available in TEADAL GitLab.

https://gitlab.teadal.ubiwhere.com/teadal-tech/opa-policy-editor-webapp

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 28 of 76

3. THE MONITORING SUBSYSTEM (AI-DPM)

3.1 AI-BASED PERFORMANCE MONITORING PROCESS

In distributed Information Technology (IT) systems managed by platforms like Kubernetes,
gaining visibility into resource utilization, such as CPU, memory, disk usage, energy
consumption, and network behaviour, is essential for the proactive management of system
functionality and performance. To contribute to addressing these needs in the TEADAL project,
the component AI-DPM (Artificial Intelligence-Driven Performance Monitoring) has been
produced. By applying Artificial Intelligence for IT Operations (AIOps), AI-DPM enables
intelligent monitoring across federated environments. This component operates as part of the
Control Plane, to generate insights on the performance of the TEADAL infrastructure and
application environment resource utilization.

The AI-DPM relies on historical time-stamped metrics metadata from the TEADAL resource
utilization system behaviour to detect anomalies and generate predictive insights. It was
initially designed to provide insights on resource utilization to the Control Plane optimizer, to
let it define and establish effective strategies for optimizing data flows in TEADAL. In the latter
phases of the project activities, it has evolved as a standalone support tool developed as REST
API services, and available for other TEADAL components, providing a wider set of different
monitoring insights.

The progression of the AI-DPM experimental process consists of interrelated incremental
phases. In the first iteration, the initial feasibility study and the foundational AI-DPM design, as
described in Deliverable D4.1 [7], were presented. In the second iteration, the Proof of Concept
(PoC) experimental results, based on classical AI models trained and tested using a publicly
available metadata set, were shared in Deliverable D4.2 [8]. In this final iteration, AI-DPM tool
has reached its full maturity, featuring incremental advancements:

Expanded metadata capture: The scope of collected metadata has grown beyond
traditional system resource performance metrics to include energy consumption data
and service-mesh observability metrics within the TEADAL framework.

Enhanced Experimentation strategy: To evaluate the performance of the models
μBench-based experimentation environment was used to stress the system and collect
the metadata. µBench is an open-source software that emulates real-world Kubernetes
cluster scenarios. It is a tool designed to assess the performance of microservices
within a Kubernetes environment. It allows users to simulate the behaviour of an
application composed of multiple microservices, performing load tests and collecting
metrics like CPU, memory, network, and disk space usage.

Enhanced AI model integration: The original suite of statistical and classical AI models
has been extended with both local and cloud-based large language models (LLMs),
enabling improved analytical capabilities and comparative benchmarking against
conventional classical methods.

Interactive experimentation dashboard: In this phase, a dedicated custom dashboard
has been added to support user experimentation with metrics selection, model training,
testing, and evaluation, allowing users to compare performance, visualize the
predictions, and anomaly detection results for actionable insights.

The approach

The AI-DPM approach relies on AIOps to collect multimodal metadata and apply different AI
models for anomaly detection and prediction. It has been developed through incremental steps
to refine machine learning (ML) algorithms, with recent iterations including the use of large

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 29 of 76

language models (LLMs). Metadata sources included public data, VM nodes, μBench-based
benchmarks, and anticipated TEADAL pilot data during validation. The AI-DPM process
consists of five steps: (i) metadata collection, (ii) aggregation, (iii) use in the ML cycle, (iv)
insight generation, and (v) insight serving. The schematic representation of the end-to-end AI-
DPM approach is presented in Figure 14 below.

FIGURE 14 THE FIVE-STEP AI-DPM PROCESS

Types of Metadata Collected

The core of the AI-DPM process is managing time-stamped metrics metadata. This runtime
metadata is collected across multiple layers of infrastructure and application environments
using a stack of observability tools, such as Prometheus, Kepler, and Istio. These triads of
monitoring and observability tools specialize in different sets of metadata:

Prometheus: Prometheus2 is an open-source monitoring and alerting toolkit designed for
reliability and scalability in dynamic cloud environments. It collects metrics primarily of
resource utilisation from configured targets at specified intervals and supports powerful
queries for analysis

 Kepler (Kubernetes-based Efficient Power Level Exporter): Kepler3 is an open-source tool
that estimates and exports power consumption metrics in Kubernetes environments. It
helps monitor and optimize energy usage across containers and nodes to support
sustainable computing.

2 https://prometheus.io/

3 https://github.com/sustainable-computing-io/kepler

https://prometheus.io/
https://github.com/sustainable-computing-io/kepler

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 30 of 76

Istio: Istio4 is an open-source service mesh that provides a uniform way to secure, connect,
and monitor microservices. It manages traffic flow, enforces policies, and offers
observability into service communications.

The main types of metadata collected for anomaly detection and predictive insights in AI-DPM
are system resource usage metrics, energy and sustainability metrics, and service-mesh
observability metrics. The energy and service-mesh metrics were added to AI-DPM in a later
phase of the incremental experimentation process to extend the monitored metric dimensions.

Resource usage metrics

Collected via Prometheus, the resource usage metrics capture the performance and the status
of infrastructure components, such as nodes and containers. Key macro categories include
compute usage, memory consumption, and disk Input / Output (I/O). These metrics enable
workload profiling, anomaly detection, and effective scheduling based on actual resource
consumption patterns. Specific examples of resource usage metrics, along with their
description and the insights they offer, are provided in Table 1. The complete list of over a
thousand Prometheus-scraped metrics is provided as a supplementary file in the GitLab
repository.

TABLE 1: PROMETHEUS SYSTEM RESOURCE MONITORING METRICS

Metric Description

Description

node_cpu_seconds_total Total time CPU cores spend executing processes. Used to
track CPU utilization.

node_memory_Active_bytes Amount of actively used memory. It is useful for detecting
memory leaks.

node_memory_MemAvailable_bytes Amount of memory available for starting new applications.
Useful for memory pressure analysis.

node_disk_read_bytes_total Total number of bytes read from disk. Helps monitor disk read
I/O usage.

node_disk_write_bytes_total Total number of bytes written to disk. Helps monitor disk write
I/O usage.

Energy and sustainability metrics

Energy and sustainability metrics are collected to provide insights into power usage and energy
efficiency at various levels of the system. These metrics are collected with Kepler and include
instantaneous power consumption, accumulated energy usage, component-level
breakdowns, and platform-level energy metrics. Collected at runtime, these metrics help
assessing the energy consumption associated with different workloads and support
sustainability reporting and planning. This way, AI-DPM contributes to energy efficiency goals
of the project. Other energy-focused components of TEADAL Platform can use energy and
sustainability metrics and insights provided by AI-DPM, for example, to implement to energy-
aware scheduling or to select data transformation implementations most suitable to current
conditions of the infrastructure and the workloads, as described in D3.3 [10] . A few examples
of such Kepler metrics are described along with their insights in Table 2, with additional sets
provided in the GitLab repository.

4 https://istio.io/

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/all_metrics_prometheus.txt?ref_type=heads
https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/all_metrics_prometheus.txt?ref_type=heads
https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/kepler_metrics.txt?ref_type=heads
https://istio.io/

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 31 of 76

TABLE 2: KEPLER METRICS FOR ENERGY AND SUSTAINABILITY MONITORING

Metric Description

kepler_node_package_joules_total Total CPU energy consumed by the node (measured
in joules). Helps to analyse energy efficiency.

kepler_container_gpu_joules_total Measures GPU energy usage per container. Useful for
AI/ML workloads.

kepler_node_dram_joules_total Total RAM (DRAM) energy consumption. Helps track
memory-intensive applications.

kepler_container_power_watts Real-time power consumption (watts) of a running
container. Useful for power-aware scheduling.

kepler_cpu_usage_ratio Ratio of CPU usage to power consumed. Helps
determine inefficient CPU workloads.

Service-mesh observability metrics

These metrics, shown in Table 3 are gathered from the service mesh layer and offer visibility
into inter-service communication, latency, traffic volume, and security events. The main macro
categories include traffic flow, latency and performance, error and reliability, and security
telemetry. The metrics support the analysis of distributed workloads, help identify bottlenecks
and validate the behaviour of service-level policies. The full list of these Istio metrics is provided
along with their description in the GitLab repository.

TABLE 3: EXAMPLES OF ISTIO SERVICE MESH OBSERVABILITY METRICS

Metric Description

istio_requests_total Total number of HTTP requests received by a
service. Used to track request load.

istio_request_duration_milliseconds Measures the time taken to process requests
(latency) in milliseconds. Helps detect slow
services.

istio_tcp_sent_bytes_total Total bytes sent over TCP connections by a
service. Used for network performance
analysis.

istio_requests_duration_seconds_bucket A histogram of request durations, useful for
analysing performance trends.

istio_policy_request_count Tracks the number of requests that pass or fail
Istio security policies. Useful for enforcing
security rules.

3.2 AI MODELS

AI-DPM integrates an AIOps approach with both classical AI models and cutting-edge time
series Large Language Models (LLMs). Time series forecasting and anomaly detection are
common ML tasks that have recently seen significant advancements with the integration of
LLMs. While classical statistical and AI approaches remain essential, combining them with
LLMs unlocks enhanced predictive capabilities, providing a benchmarking framework for
evaluating model performance. This hybrid implementation extends the capabilities of AI-DPM,
enabling the utilization of the most robust and effective tools for monitoring TEADAL’s data
lake infrastructure and application environment, resulting in more accurate and resilient
anomaly detection and forecasting solutions.

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/istio_metrics.txt?ref_type=heads

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 32 of 76

Initially, as detailed in the Deliverable D4.2 [8] during the PoC phase, AI-DPM relied mainly on
standard statistical methods and classical neural networks for predictive analysis and anomaly
detection. In subsequent phases, we expanded the model suite by incorporating LLMs to
strengthen results and benchmark traditional techniques. The following sections outline the
specific models integrated into the AI-DPM tool.

Statistical and Classical AI Approach

Under this category, statistical models such as AutoRegressive Integrated Moving Average
(ARIMA) and Prophet, along with Recurrent Neural Network (RNN) AI models, including Gated
Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), are considered. Each of these
has its advantages in specific contexts of forecasting and anomaly detection.

Statistical Models (ARIMA/Prophet)

ARIMA is a classical statistical model used for time series forecasting, particularly when data
exhibits patterns such as trends or autocorrelation. It integrates three key components:
AutoRegressive (AR), which models the relationship between current and past values;
Integrated (I), which applies differencing to render the time series stationary; and Moving
Average (MA), which considers past forecast errors. ARIMA does not require normalization of
data and is effective for univariate forecasting tasks. Its strength lies in its simplicity,
interpretability, and robust performance on well-behaved time series with linear patterns. More
importantly, in the context of TEADAL, they generally demand fewer computational resources.

Prophet is an open-source time series forecasting tool developed by Facebook, designed for
handling data with strong seasonal effects and historical trends. It is based on an additive
model where components like trend, seasonality, and holidays are modelled separately and
combined. Prophet is user-friendly, robust to missing data, and handles outliers well. It doesn’t
require extensive data preprocessing or normalization, making it ideal for business forecasting
tasks. Its ability to incorporate domain knowledge through custom seasonality and event
effects makes it highly flexible and interpretable.

RNN Models (GRU/LSTM). GRU and LSTM are advanced types of Recurrent Neural
Networks (RNNs) widely used in time series forecasting and anomaly detection. Their
architecture is designed to capture long-term dependencies in sequential data, making them
ideal for modelling complex temporal patterns like system performance trends or usage
fluctuations. In forecasting, they predict future values based on historical sequences, while in
anomaly detection, they help identify deviations from learned patterns. Both models use gating
mechanisms to control information flow—LSTM has separate input, output, and forget gates,
while GRU simplifies this with update and reset gates—resulting in efficient learning. Their
ability to handle noise, missing data, and non-linear dynamics makes them powerful tools for
AI-driven monitoring systems like those in the TEADAL project.

Large Language Models (LLMs)

Large Language Models (LLMs), though originally built for text tasks, are increasingly being
explored for time-series data analysis. By framing time-series problems as language modelling
tasks, such as treating sequences of numerical values as tokens or generating textual
descriptions of trends, LLMs can be adapted for forecasting, anomaly detection, and data
summarization. We assessed various time-series-focused LLMs, e.g., TinyTimeMixer (TTM),
LSTM-GPT, TimesFM. Our assessment focused on several parameters, including whether the
LLMs are open or commercial. Eventually, we have integrated both the cloud-based and the
on-premises LLMs, specifically, TimeGPT and Lag-Llama, alongside the classical AI models,
for prediction and for anomaly detection.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 33 of 76

Lag-Llama/TimeGPT

TimeGPT, a cloud-based LLM tailored for time series tasks, introduces a new level of
abstraction in predictive modelling for TEADAL. Unlike traditional models, it requires no local
training or data preprocessing. Forecasts are generated through direct API calls after API key
setup, enabling rapid deployment and scalability. TimeGPT exemplifies the integration of LLMs
into classical AI pipelines, offering powerful predictive capabilities with minimal overhead.

Lag-Llama is a local LLM designed for time series forecasting. It uses a transformer-based
architecture to model sequences of lagged inputs and generate future values. Forecasting is
treated as a sequence completion task. Lag-Llama supports multivariate time series and can
be used for both forecasting and anomaly detection. It runs locally, without requiring API calls
or cloud services, unlike models such as TimeGPT.

3.3 ARCHITECTURE AND INTEGRATION OVERVIEW

The AI-DPM system has been designed upon the monitoring ecosystem of TEADAL nodes
deployed on Kubernetes using open-source toolsets to ensure wide-ranging observability,
alerting, and visualisation capabilities. This ecosystem primarily consists of Prometheus, Istio,
and Kepler. Building upon this, the AI-DPM component consists of Thanos, AI algorithms,
APIs, and GUI for experimentation and visualization. These elements of AI-DPM are part of
the general AI-DPM architectural layers as shown in Figure 15 viz. Data Aggregation and
Processing Layer (Thanos), AI Analytics Layer (AI algorithms), and the Serving Layers (APIs
and UI). A complete description of the AI-DPM architecture can be referred from deliverable
D2.4 [4].

FIGURE 15 AI-DPM APPLICATION ARCHITECTURE (COMPONENTS) DIAGRAM

Starting from the observability and monitoring services of the TEADAL infrastructure and
application environment, the metrics for AI-DPM flow through multi-layered architectural
components:

• Monitoring/Data Collection Layer

The AI-DPM data collection layer uses the TEADAL monitoring tools stack, such as

Prometheus (for infrastructure metrics), Istio (for service mesh observability), and

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 34 of 76

Kepler (for energy monitoring). This layer continuously provides historical time series

metrics metadata regarding system resource usage, network traffic, and energy

consumption. This layer is an integral element of TEADAL’s system observability and

monitoring services.

• Data Aggregation and Processing Layer

 This layer functions as a time series database. After data is collected through the data

collection layer, it is adequately aggregated and persistently stored for future

analytical processes. Here, the data is processed with Thanos, which provides long-

term storage and scalability, ensuring that historical data is easily accessible for

anomaly detection and predictive analysis.

• AI Analytics Layer

This layer serves as the AI/ML engine of AI-DPM, where processed data is analysed
using machine learning models and algorithms following the standard ML lifecycle
(train-test-evaluate) to detect anomalies and predict trends. It incorporates classical ML
models, statistical methods, and large language models (LLMs).

• AI-DPM Serving Layer

This final layer allows sharing AI-DPM outputs to be served as REST APIs to be
consumed. The API service features four main operations: (i) fetching historical data,
(ii) model training on historical data, (iii) inference to generate predictions using trained
models, and (iv) detecting anomalies. The /fetch endpoint is used to retrieve data
necessary for processing. The API endpoint for training the selected model on historical
data is /train, while generating predictions using the trained model is done by calling
the /infer endpoint. The /anomaly endpoint serves for anomaly detection.

• AI-DPM Dashboard

The AI-DPM Dashboard is a dedicated experimentation interface designed to clearly
show the functionalities of the AI-DPM tool that support the basic AI workflow, including
training, testing, and evaluation of machine learning models for time-series forecasting
and anomaly detection. It integrates the multiple model implementations of the AI-DPM
tool with configurable parameters, allowing users to execute training workflows, assess
model performance, and compare results across different configurations. It enables
quick comparison of AI-DPM multi-model performances and helps users choose the
most suitable AI model for their specific context

3.4 EXPERIMENTS AND RESULTS

The experimental results from the PoC, as reported in Deliverable D4.2 [8], provided a
foundational basis for the development of AI-DPM. However, the PoC analysis relied on public
datasets sourced from systems that slightly differ from the TEADAL environment. While the
dataset was relatively large, it was only a five-day data of monitoring, and the microservices
used in the Kubernetes cluster were less comparable to those in TEADAL. To address these
gaps of PoC, we implemented an incremental strategy of gathering metadata from systems
that closely resemble the TEADAL pilots and utilizing tools like µ-bench for consistent
microservice simulation. We set up two VM in our lab and implemented a 2 TEADAL node
pilot-like scenario. Additionally, the integration of more advanced techniques, such as time-
series LLMs, was used to enhance forecasting and anomaly detection.

We present here the results of the AI-DPM tool. Monitoring metadata was collected from VM-
nodes that closely mirror the TEADAL pilot setup, and µ-bench was employed to simulate

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 35 of 76

realistic microservice behaviour. Furthermore, both local and cloud-based time-series LLMs
were incorporated into the AI-DPM algorithm stack to strengthen its analytical capabilities. At
the time of writing this deliverable, AI-DPM has been deployed in two TEADAL Pilots, the
Mobility and the Regional Planning. Additional deployments are planned during the integration
and validation work.

Resource Usage Metadata Results

Resource usage metadata from Prometheus provides critical system-level metrics, including
CPU, memory, and disk usage. For example, the results of memory resource use
(node_memory_MemAvailable_bytes) metrics prediction using all six models available in AI-
DPM, along with the anomalies in the pattern of available memory, are shown in the two figures
below, Figure 16 and Figure 17. This metric indicates the amount of memory available for new
applications without resorting to swapping. In the plot, the historical data (blue line) reveals a
baseline of available memory hovering between 28.6 and 29.0 GB, with several significant
spikes reaching up to 29.7 GB. The forecasting models demonstrate various prediction
approaches for future memory consumption:

● ARIMA (green dashed line) predicts a gradual increase, reaching the highest forecast
around 29.4 GB.

● Prophet (red dashed line) anticipates a moderate increase with slight fluctuations.

● GRU and LSTM (blue and orange dashed lines) forecast more conservative growth
with tighter oscillations.

● LagLlama and TimeGPT (brown and purple dashed lines) predict declining memory
usage, with TimeGPT showing the most pessimistic forecast, dropping below 28.8 GB.

FIGURE 16 PREDICTIVE INSIGHT FOR MEMORY AVAILABILITY ON THE NODE

In terms of actionable insights, node_memory_MemAvailable_bytes offers valuable insight
into the actual memory available for applications without resorting to swap. When this value
remains consistently low, it indicates memory pressure and may signal an impending out-of-
memory event, necessitating actions to offload tasks or auto scale to prevent performance
degradation. Conversely, if memory availability is consistently high, it suggests over-
provisioning, requiring a safe reduction in allocated memory resources to save energy.
Additionally, by analysing trends over longer periods during low-demand phases, memory can

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 36 of 76

be transitioned into lower power states, optimizing energy usage without impacting system
responsiveness.

FIGURE 17 ANOMALY DETECTION FOR MEMORY AVAILABILITY ON THE NODE

The anomaly detection model implemented in AI-DPM has identified critical memory
availability fluctuations that require attention to prevent potential system degradation. These
anomalies represent statistically significant deviations from normal memory consumption
patterns, likely indicating memory leaks, unexpected workloads, or system issues requiring
investigation. The identified anomalies exclusively show memory availability increases rather
than decreases, which counterintuitively may indicate problematic behaviour - applications
terminating unexpectedly, service restarts, or major processes releasing memory abnormally.
This analysis transforms what might appear as positive anomalies (more available memory)
into actionable insights about potential application instability, allowing for proactive system
reliability improvements.

Energy Sustainability Metadata

The energy metadata metrics are exposed and exported by Kepler. Kepler uses eBPF
(extended Berkeley Packet Filter) to collect energy-related system stats and export them as
Prometheus metrics. Several Kepler metrics provide granular power consumption data for
Kubernetes pods, nodes, and containers. As an example, the Kepler Total power consumption
per node (Watt) measures the total electrical power used by a compute node, recorded in
watts. This includes power drawn by the CPU, memory, storage, and other components.

The predictive models demonstrate divergent forecasts for future power consumption.
Traditional statistical approaches (ARIMA and Prophet, shown in green and red dashed lines)
predict sustained elevated power usage at approximately 0.65-0.7 watts, suggesting the recent
high-consumption pattern may continue. Meanwhile, neural network models (GRU and LSTM,
in blue and orange) forecast a return to more moderate levels around 0.4-0.45 watts, indicating
the spike may be transitory as shown in Figure 18. This predictive analysis enables proactive
power management and can inform energy optimization strategies as part of sustainability
initiatives, allowing operations teams to schedule workloads during periods of anticipated lower
consumption or implement dynamic throttling during projected high-usage windows.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 37 of 76

FIGURE 18 PREDICTIVE INSIGHT FOR POWER CONSUMPTION PER NODE

As shown in the time-series plot, node power consumption follows distinct daily patterns with
baseline usage fluctuating between 0.35-0.4 watts during normal operations. The data reveals
two significant power consumption spikes as shown in Figure 19. The two spikes were
identified in the anomaly detection analysis as anomalous power consumption patterns that
need further attention and monitoring.

FIGURE 19 ANOMALY DETECTION FOR POWER CONSUMPTION PER NODE

Infrastructure and Network Metadata

The infrastructure and network metadata are metrics that help monitor service behaviour and
are generated by Istio for all service traffic in, out, and within an Istio service mesh. These
metrics provide useful information such as volume of traffic, error rates within traffic and the
response times for requests. As an example, the results of different prediction models for the
node network bandwidth metrics presented in Figure 20 and the anomaly detection results for
the same metrics presented in Figure 21, reveal distinct usage patterns with predictable
baseline traffic and recurring spike events. Our predictive modelling indicates that the network

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 38 of 76

consistently maintains a baseline bandwidth of approximately 0.185 MB/s per node with
regular spikes reaching 0.21-0.23 MB/s. More significant anomalous spikes occasionally reach
0.26 MB/s. This pattern suggests that scheduled processes or periodic system activities are
driving network utilization cycles.

FIGURE 20 PREDICTIVE INSIGHT FOR ISTIO TRAFFIC PER NODE

The analysis identified four major bandwidth anomalies and one exceptional spike that
significantly deviated from normal patterns. These represent opportunities for system
optimization or potential issues requiring remediation. Among possible actions, to review
application architecture to reduce inter-node dependencies and/or evaluate microservice
deployment patterns to optimize network traffic flow. By implementing these recommendations,
IT operations can expect more efficient resource utilization, reduced anomaly response times,
and improved infrastructure stability, ultimately supporting better application performance and
user experience.

FIGURE 21 ANOMALY DETECTION FOR ISTIO NETWORK TRAFFIC PER NODE

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 39 of 76

3.5 AI-DPM OUTPUTS

The AI-DPM outputs are served as REST APIs, and through an interactive experimentation
and visualization GUI.

Rest APIs

AI-DPM is developed as a REST API service that provides time series forecasting capabilities
using multiple models and integrates with persistently stored metrics in Thanos. The service
supports multiple models, including a cloud API for TimeGPT LLM (requires tokens) and other
local models, ranging from RNNs to classical statistical models and LLMs. In addition, the
service offers a configurable training window and flexible data sourcing from Thanos via
Prometheus Query Language (PromQL), a functional query language for selecting and
aggregating time series data in real time.

The API service features four main operations (service endpoints):

1. Fetching Historical Data (/fetch): This endpoint retrieves time series data based on
a specified Prometheus query and time range (in hours). The request requires the
query and duration and, optionally, accepts a Thanos URL. The response includes the
historical data, which is essential for model training and evaluation.

2. Model Training (/train): This endpoint trains forecasting models—either local (GRU,
LSTM, ARIMA, Prophet) or LLMs (Lag-Llama)—using specified parameters like query,
training duration, input/output steps, and model type. Local models are saved under
the models/ directory for reuse. The API responds with a message indicating successful
training.

3. Inference (/infer): This endpoint generates predictions using a previously trained
model. It requires the same parameters as training—query, time range, input/output
steps, and model name. All the models, including classical as well as local and cloud-
based LLMs are supported. The output is a list of future time-stamped predictions.

4. Anomaly Detection (/anomaly): This endpoint identifies anomalies in time series data
using the provided query and detection method. You can specify the confidence interval
and detection duration. It returns a list of time-stamped values flagged as anomalies,
helping detect unusual behaviour in monitored metrics.

5. Model Evaluation (/compute_rmse): This endpoint calculates the Root Mean Square
Error (RMSE) across multiple predictive models. It returns a number for each model,
with lower values indicating better performance. This metric helps to identify top-
performing models, supports model comparison, enables ensemble decisions, and
assists in model selection.

Collectively, these endpoints enable a complete AI-DPM workflow: from data retrieval and
model training to predictive insights and anomaly monitoring. The detailed parameter
examples and schema of endpoints are provided in the Swagger file.

AI-DPM Dashboard

The AI-DPM Dashboard is a dedicated experimentation interface designed to clearly show the
functionalities of the AI-DPM tool that support the basic AI workflow, including training, testing,
and evaluation of machine learning models for time-series forecasting and anomaly detection.
It integrates the multiple model implementations of the AI-DPM tool with configurable
parameters, allowing users to execute training workflows, assess model performance, and

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/swagger_api.json

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 40 of 76

compare results across different configurations. It enables quick comparison of AI-DPM multi-
model performances and helps users choose the most suitable AI model for their specific
context.

Dashboard Overview

The AI-DPM service dashboard, presented in Figure 22, is organized into two primary sections:
the Global Configuration panel on the left for setting global parameters, and the Monitoring &
ML Dashboard Panel on the right, for executing specific workflows such as data retrieval,
model training, and performance evaluation.

FIGURE 22 AI-DPM SERVICE DASHBOARD

Global Configuration Panel
The PromQL Query field allows to define the data source, defaulting to CPU idle metrics but
customizable for all the timeseries metadata relevant for forecasting needs and gathered from
Prometheus, Kepler, and Istio. Specifying the metrics to modify this query requires properly
formatted and aggregated timeseries data suitable for the models available in the dashboard.

● The Hours for fetch/train/anomaly setting controls the historical time window used
for analysis. The default 3-hour setting is appropriate for short-term patterns, but it can
be adjusted using the +/- buttons. Consider shorter windows (1-6 hours) for immediate
patterns, medium windows (12-48 hours) for daily patterns, and longer windows (72+
hours) for weekly patterns, keeping in mind that longer windows require more
computational resources.

● Input Steps (RNN) determines how many previous points (in time) the model considers
when making predictions. The default 48 steps can be modified as needed. This
parameter significantly impacts model behaviour—larger values help capture long-term
dependencies but increase computational demands, while smaller values process
more efficiently but might miss extended patterns.

● Output Steps sets the prediction horizon—how far into the future the models will
forecast. The default 20 steps can be adjusted according to requirements. Generally,

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 41 of 76

prediction accuracy decreases as the horizon extends, so balancing is needed for
longer-term forecasting against accuracy expectations.

The models available section simply displays all the available models that can be selected for
experimenting: GRU, LSTM, ARIMA, Prophet, TimeGPT, and LagLlama.

Operations Panel

Located on the right side of the dashboard under the “Monitoring & AI/ML Dashboard” header,
the Operational Panel consists of four sections:

Fetch Historical Data from Thanos: this section allows the retrieval of time-series data
based on your configured query and time window. It includes a "Fetch Data" button that
retrieves time series data from the Thanos backend. Before initiating any training, the
first step is to ensure that the query is correctly set up.

Train Local Models: this section provides options to select the Model To use from various
forecasting models: Statistical Models (ARIMA/Prophet), RNN Models (GRU/LSTM),
and local LLM (Lag-Llama), along with a "Train Models" button to initiate model training.

Compute error RMSE: in this section, users can evaluate all the local models trained
earlier in addition to the on-cloud LLM TimeGPT model performance of predictive
models by selecting models such as GRU, LSTM, ARIMA, Prophet, TimeGPT, and
LagLlama, and then clicking the "Compute RMSE" button to compute the Root Mean
Square Error. This integrated setup enables users to systematically experiment with
different models and configurations, making it a powerful tool for time series predictive
monitoring analysis and model performance comparison

Anomaly Detection: this section enables users to identify unusual patterns in the selected
metrics using two statistical methods: rolling z-score and prediction interval-based
detection. Users can select a model and a metric, then visualize anomalies as
highlighted regions overlaid on time series plots. This helps in quickly spotting
deviations from expected behaviour based on model forecasts and statistical
thresholds.

In the operational panel, in addition to fetching historical data for training, training local models,
and evaluating their performance, prediction results, prediction, and anomaly plots are
visualized. A tabular view of the predicted values with corresponding timestamps for each
model is also made available through this panel.

Overall, the AI-DMP Dashboard is part of the distribution of the AI-DPM tool. It comes together
with the AI-DPM API. Its usage is intuitive and can enable the leverage of all the functionalities
provided by the API. We believe that it can be useful mainly for users interested in
experimenting with the array of AI models available in AI-DPM. Configure training parameters,
practice all the ML cycle to choose the Models that are more suitable for their needs and
contexts. Eventually, evaluate the performance of the models and make an informed decision
based on the appropriate monitoring metrics.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 42 of 76

4. THE AUTOMATION SUBSYSTEM (ASG)

The automation subsystem, referred to as Automated SFDP Generation (ASG), is a key
component of the TEADAL Stretched Data Lakes architecture and its control plane. It
operationalizes the SFDP-based data sharing model proposed by TEADAL, transforming high-
level sharing intents into uniform, policy-compliant, and deployable data services. As part of
the TEADAL platform, ASG realizes:

- A developer-facing service for producing standardized SFDPs.

- A controller for SFDP execution integrated into TEADAL GitOps, Catalogue-driven data
product and agreements management, and policy injection and enforcement.

Innovation highlights:

- Declarative code generation using advanced generative AI technologies

- Unified runtime environment abstracting away low-level data access, processing and
caching

- Transforms library supporting custom data transformations, including dynamic injection
of their specific implementations

- Support for including deployment annotations (e.g., resource needs, TEE/GPU
targeting)

- Support for runtime monitoring and observability via AI-backed analytics

Comparing with the alternatives:

- Manual SFDP creation would require lots of developer skill and effort, would be more
time consuming and would result in inconsistent results and lack of code sharing
between the SFDPs.

- While in principle OpenAPI tools5 could be used to generate and to parse SDFP specs
as well as to generate the SFDP app code, this could result in fragile and opaque code,
possibly lacking semantic awareness of TEADAL specifics.

This section provides the high-level design of the ASG subsystem, starting with the overview
of its technology choices and dependencies in (ref), the componentization and the high-level
design in (ref), and the implementation details in (ref).

4.1 THE ASG DEPENDENCIES AND TECHNOLOGY CHOICES

Manually authoring specifications and implementations for SFDPs would require users to
understand REST semantics, data transformation logic, pagination schemes, input/output
mappings, and more, making the creation process both time-consuming and error-prone,
especially for non-expert users.

We notice that generative AI, particularly large language models (LLMs), can substantially
lower this barrier by translating concise user intents expressed in natural language or guided
prompts into valid, executable specs. LLMs trained on software patterns and API schemas can
infer structure, resolve ambiguous terms, suggest transformation pipelines, and pre-fill

5 OpenAPI.Tools - an Open Source list of great tools for OpenAPI.

https://openapi.tools/

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 43 of 76

boilerplate based on partial context, acting as intelligent intermediaries across the data sharing
lifecycle and helping to:

- Discover relevant APIs and datasets by interpreting user goals,

- Draft proxy or transform specifications from minimal input,

- Summarize or verify compliance with data access policies,

- Auto-generate test scenarios and documentation for shared data services.

In federated or multi-organizational settings, such as in TEADAL, this capability can promote
interoperability and speed, reducing manual coordination and accelerating the creation of
reproducible, governed data pipelines.

The GIN Library

As was already presented in D4.2 [8], SFDP generation relies on the LLM-driven GIN library,
developed in IBM Research and becoming widely used internally both for research and for
contributing to the upcoming data management products. Without repeating the already
reported GIN library details, we present the main exported constructs of GIN library relevant
to this document, for completeness:

- GIN Connector Specification – a set of pydantic models that cover internalization of
every aspect of OpenAPI specification6 and a module that parses the standard
OpenAPI specification files to fill in parts of GIN Connector Spec.

- GIN Spec Generator – a module that generates the GIN Connector Specification for a
given request.

- GIN Spec Parser – a module that parses the GIN Connector Specification embedded
into the generated SFDPs, producing the list of endpoints to fetch from the origin FDP
and the list of transforms to apply to the fetched dataset to produce the result expected
by the SFDP spec.

- GIN Spec Executor – a module that takes in the parsed Connector Specification and
executes it by 1. fetching the origin data and 2. loading and applying the required data
transformations.

GIN Connector Specification module is central to the GIN library and is included in all the other
modules. For completeness, we provide a full description of the ConnectorSpec model below.
GIN Spec Generator module is closed source and is provided to the TEADAL project team as
a dependency, in the form of a python package. GIN Spec Parser and GIN Executor are open
and used as a basis for the TEADAL ASG-runtime library, also described below. Since its first
presentation in D4.2 [8], the library has been adapted, specifically for the TEADAL use case,
as will be described in what follows.

Gin ConnectorSpec

The ConnectorSpec model defines how to construct a selective proxy REST API based on an
existing OpenAPI-defined data-serving backend. It allows specific endpoints to be re-exposed
with argument mappings, runtime data transformations, and output reshaping. The
ConnectorSpec model is used to configure:

- Which backend endpoints are exposed

6 OpenAPI Specification v3.1.1

https://spec.openapis.org/oas/latest.html

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 44 of 76

- How parameters are passed or generated

- How to transform responses into structured datasets

- What transformations are applied before data is returned

Figure 23 presents a simplified and annotated ConnectorSpec schema summary. The schema
is very much aligned with the OpenAPI specification and affords the following key capabilities:

- Selective Proxying: only whitelisted endpoints and only whitelisted data elements are
exposed

- Flexible Input Mapping: inputs can come from constants, runtime inputs, or references
to other calls/envs

- Data Transformation: output fields can be constructed from one or more input fields
applying transformation functions

- Pagination Support: common pagination strategies are supported, including cursor and
page-based

- Structured Output: outputs are mapped to named datasets, enabling consistent
consumption downstream

FIGURE 23 GIN CONNECTOR SCHEMA

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 45 of 76

The structure of ConnectorSpec somewhat follows that of the OpenAPI specification and, while
powerful and flexible, is also inherently verbose and complex. GIN Spec Generator module
employs LLM calls to dynamically generate these specs provided with guided prompts. For
example, given a prompt like “Expose the /employees endpoint with a filter by role and only
return name and email”, an LLM can scaffold the relevant ApiCall object, define the necessary
Arguments, and propose output field transformations, all aligned with the ConnectorSpec
schema shown in Figure 23.

Ollama Service

To avoid reliance on expensive or intermittently available cloud-based LLM services, we
focused on enabling offline-compatible generation of SFDPs. For this, we first evaluated a
number of technology candidates available for the local model and inference serving and have
selected Ollama among all the considered options. Ollama stood out due to its ease of use,
cross-platform support, and built-in model management. However, our decision was informed
by a broader review of local inference options, summarized in Table 4.

TABLE 4: COMPARISON OF THE LOCAL INFERENCE TOOLS AND FRAMEWORKS

Framework /
Tool (with link)

Community &
Ecosystem

License Notes

Ollama

https://ollama.com
Growing, GitHub activity MIT

+ Easy to use; Docker support; fast to prototype;
many models available

LM Studio

 https://lmstudio.ai
Small, mainly desktop users Unknown - GUI-focused, not suitable for automation

vLLM link

Active research/dev
community

Apache 2.0

+ Excellent performance with batching; scalable;
smart GPU management

- learning curve, complexity

Text Generation
Inference (TGI) link

Strong support from
Hugging Face

Apache 2.0 Designed for production inference, full REST API

llama.cpp link Very active, many wrappers MIT

+ Lightweight and efficient

- CLI or custom server required; needs
REST/gRPC wrapper

GPT4All
https://gpt4all.io

Moderate, good docs Apache/MIT - Better for desktop/offline GUI use

DeepSpeed-MII link Research-focused MIT
+ Great for high-performance inference

- Non-trivial setup

AutoGPTQ / ExLlama
link

Niche but growing Apache/MIT

+ Optimized for quantized model inference

- Still maturing

Each option was evaluated for its suitability in constrained, potentially air-gapped
environments, as well as its compatibility with Kubernetes-based deployments. While more
performant frameworks like vLLM and TGI offer production-grade scalability, they tend to have
a steeper learning curve and more infrastructure requirements, e.g. advanced GPUs,
etc. Ollama offers a pragmatic middle ground, with a strong local-first philosophy, simple
deployment with Docker, and an evolving ecosystem of compatible models. In addition, Ollama

https://ollama.com/
https://lmstudio.ai/
https://github.com/vllm-project/vllm
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/ggerganov/llama.cpp
https://gpt4all.io/
https://github.com/microsoft/DeepSpeed-MII
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwimvKSJq4eNAxURSaQEHTKtBg0QFnoECAoQAQ&url=https%3A%2F%2Fgithub.com%2FAutoGPTQ%2FAutoGPTQ&usg=AOvVaw1_IpVWzeODq_4_sGjE_wna&opi=89978449

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 46 of 76

community has proven to be one of the first to adopt the codebase to the latest feature
additions of the OpenAI such as functions calling7 and structured outputs8.

Then, we have adapted the GIN library to be able to work with Ollama and have selected
several models available in the community and capable of delivering the inference results
required by the GIN library. Namely, GIN library, which in-house uses the advanced granite-
code-instruct models family, relies on model's ability to support tool calling and structured
output. In TEADAL, we have adapted the compatible granite-code models family available in
the Ollama Models Library9.

In addition, we have integrated the ollama service as part of the TEADAL Node, as an app-
level-service that can be enabled on any TEADAL Node. If enabled, the service can be also
used for other inference jobs, both by additional TEADAL services and, in the future, by the
data analytics workflow put together by federation partners and users.

Data Transformations Library

The data transformations library is, architecturally, one of the major building blocks of the FDP-
to-SFDP pipelines.

As part of the ASG subsystem, the transforms library is one of the links between the SFDP
generator and the runtime execution of the generated SFDP. First, the generator ‘understands’
the user-provided specification of how SFDP should be derived from the FDP, ‘reads’ the
descriptions of all the available transformations, and creates a plan of what transformations
need to be applied and in what order. The generator then produces the spec (referred to as
Gin Connector Specification) that is used at SFDP execution time to invoke the methods from
the same library of transformations. So, for the generation step we basically need to only have
the list of transforms with their descriptions, understandable by both the humans and by the
LLMs, while at runtime we need to have the methods themselves ready to be loaded and
executed. This link is facilitated by making the same transforms library available, both at the
generation time and at the runtime.

In a production system, we envision the transforms library to be a standalone component
responsible for the full lifecycle of the transforms and their implementations. Such component,
deployed separately, would be accessed by the ASG subsystem, both at SFDP generation
and at the SFDP execution. In addition to storing the transforms and providing access to them
to the ASG actors, the library component will take care of ingesting the transforms upon their
creation and introduction to the system, validating them from a perspective of correctness,
security, etc., collecting their runtime performance data, and decommissioning them when they
are no longer required. Such a system could be also integrated with providers and consumers
of transformation implementations through protocols such as MCP. Creating a full-featured
system like this is certainly beyond project resources and schedule but its very conception is
one of the valuable project outcomes.

For our prototyping and experimentation, we have created the simplest possible transforms
library as a collection of python functions that can be applied to the FDP data at runtime to
produce the results expected by the SFDP. Some of these functions are generic data
manipulation functions like filter, rename, slice, etc., and are built-in to the system. Some

7 https://platform.openai.com/docs/guides/function-calling

8 https://platform.openai.com/docs/guides/structured-outputs

9 https://ollama.com/library

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/structured-outputs
https://ollama.com/library

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 47 of 76

functions can be added for specific FDP-SFDP pairs to implement the required domain specific
functionality. Some other functions can be imposed by system operators to implement
infrastructure-level functionalities such as, for example, compression and caching. Yet some
others can even be dynamically adjusted to select the best possible implementation based on
current system state, resources utilization etc. For example, there can be several
implementations of the anonymization function, each requiring different types and amounts of
runtime resources. In this and other similar cases, the SFDP generator will list the
generic anonymization step as part of transformations pipeline and the runtime system, based
on where the service is deployed and what resources are available, will select the suitable
implementation and inject it to the library instead of the generic anonymization placeholder. In
general, this will be done based not only on resource availability but also on additional
parameters the system is constrained by, e.g. the considerations of data friction, data gravity,
and energy consumption (as modelled and implemented in WP3). In our prototype, the library
is delivered as a folder with python files containing all the transform functions in the library. To
differentiate general-purpose Python functions (e.g., helpers) from transformation-specific
functions, GIN imposes the requirement to decorate the transforms with a
special make_tool decorator that will help picking only the transform functions, both at
generation and at execution. In our implementation, the functions are loaded dynamically while
serving the SFDP data endpoints which supports injecting specific realizations of certain
functions at runtime as explained above.

4.2 THE ASG HIGH LEVEL DESIGN

ASG is designed to realise the uniform approach to the SFDP generation and execution
outlined in the Introduction. Overall, the system pursues and realises the following design
goals:

- Minimize developer effort required to stand up the SFDPs

- Ensure consistency across SFDPs via templated scaffolding

- Increase system maintainability by reducing the amount of custom code in the system

- Allow improving resource usage through sharing runtime components such as data
caches, transforms library, etc.

ASG achieves its goals through its three major components:

- The ASG-tool – a service for generating the SFDPs using LLM-backed GIN library

- The ASG-SFDP – a thin templated FastAPI server to be deployed on TEADAL
infrastructure

- The ASG-runtime – a library that backs-up the execution of the ASG- compliant SFDP
servers, implementing all the heavy lifting: parsing the GIN connector Specification
included in the SFDP; performing the http access to source FDPs; caching the data
(with possibility of sharing among SFDPs deployed in the same environment); applying
the transformation pipeline; error handling, etc., up to providing data to the SFDP
endpoints at runtime.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 48 of 76

FIGURE 24 ASG COMPONENTS AND DEPENDENCIES

Figure 24 provides a visual representation of ASG system components, their external
dependencies, and the relationships between them. In what follows we describe each of these
components in more detail.

ASG-tool

ASG-tool is a developer-facing command-line tool (that can be exposed as web interface)
capable of generating SFDPs, using the following inputs:

- Information about the origin FDP, including its OpenApi Specification document, its
active URLs deployed in the TEADAL Federation, as well as additional items required
to access the FDP data, e.g. auth keys.

- A minimal input spec defining the origin data source FDP and a set of endpoint configs
that prescribe how endpoint's data is derived from the origin FDP data.

- A transformations library containing reusable data manipulation functions to choose
from for deriving the SDFP data from the origin FDP data, e.g. built-in functions for
reshaping, filtering, or aggregating the datasets.

ASG-tool outputs a working project (or repo) ready for validation and further processing,
including:

- A FastAPI implementation of the SFDP server, as app.py file that includes all the data
endpoints described in the input specification. For each endpoint, the app includes a
generated GIN Connector Specification to be parsed and worked through at runtime.

- All the required boilerplate for standing up and testing the project locally, e.g. the
requirements.txt, the README.md, etc., so the developer responsible for the SFDP

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 49 of 76

can validate the generated SFDP is functioning up to the contract requirements and is
ready for onboarding and publishing. This step is necessary to ensure validity of the
generated services while reducing the overhead that would be required for creating
SFDPs from scratch and ensuring uniformity of the resulting data products. In the
future, when the technology matures, it'll be possible to include an automated validation
step, to further reduce the need for human intervention.

- All the required boilerplate for creating a deployable image of the generated SFDP and
pushing it to the TEADAL image registry, e.g. the Dockerfile and the CI workflow script
to be enacted by the GitLab services as soon as the developer pushes the generated
SFDP repo to the TEADAL's GitLab. In future production settings, the tool can be easily
extended to support git integration, such as creating the remote repository and pushing
the generated project artifacts thus triggering the CI workflow that will create and push
new service's image.

Once an SFDP is generated, additional TEADAL Platform tools and services are required to
prepare it for deployment, e.g., to add k8s resource manifests, policy files, kustomize scripts,
etc. Next, the Control Plane of the TEADAL Federation is notified about the ready to be
deployed SFDP and acts to select the deployment target and to realize the deployment. Next,
the Catalogue is notified to finalize the SFDP creation process by informing the data user about
new SFDP availability.

To summarize, the ASG-tool helps creating SFDPs as fully independent, policy-compliant, and
version-controlled data services that are deployed like any other data products in the system,
while being uniform and predictable by sharing the common template and the common,
possibly shared, runtime services (e.g., caches, transform library instances, etc.).

ASG-SFDP

Each generated SFDP app:

- Lives in its own Git repo

- Embeds the generated connector spec and imported transformation logic

- Turned to a deployable image using the GitLab CI

- Deployed as a self-contained FastAPI service with:

o Clearly defined endpoints

o Stable response schemas

o Business logic applied transparently via the ASG-runtime support

Ultimately, as part of the TEADAL platform, these apps are:

- Discoverable through the Catalogue services like other data products (FDPs)

- Deployable to TEADAL Nodes using existing practices the TEADAL Platform supports
(k8s, argoCD, GitOps, etc.)

- Auditable thanks to versioned specs and centralized runtime behaviour

- Observable thanks to supporting service endpoints with stats and possibly telemetry
postings (not yet implemented at the time of writing)

Figure 25 below presents the in-app documentation page for an example ASG-SFDP, showing
the service endpoints, common to all the SFDPs, and the data endpoints, specific for each
individual SFDP, whereby the data can be obtained as specified by the contract and realized
by the combination of GIN Connector specification, the transform library, the ASG-runtime

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 50 of 76

library and its configuration prescribing the caching policy, the http client parameters, and
more.

FIGURE 25 EXAMPLE OF SFDP /DOCS VIEW

ASG-runtime

ASG-runtime is a library created to serve as a runtime dependency imported by every
generated SFDP, with the following key responsibilities:

- Declarative Configuration, based on Pydantic Settings, including:

o HTTP client behaviour.

o Caching strategies for origin and transformed data.

o Serialization formats (e.g. orjson, pickle, or noop).

o Logging and observability options.

- Two Level Caching, one for the origin FDP datasets and one for the transformed
datasets. Both layers are backend-flexible (support LRU, disk, Redis), serialization
pluggable (support pickle and orjson), optional, and allow for triggered purging.
Caching is implemented for optimizing the network usage and saving energy related to
data transfer and transformations (and addressing project KPIs 3.2 and 3.3).

- Transformation engine, dynamically loading the transforms library functions and
executing them as specified in the GIN Connector specification of each endpoint.

- Observability support with built-in logging and statistics collection

o HTTP statistics

o Cache and serialization statistics

- Pluggability and Extensibility with modular design allowing introducing:

o Custom serializers

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 51 of 76

o Custom cache backends

o Alternate rest client implementations if needed

The library is designed to be modular, versioned, easily testable, and geared toward
configurability, observability and fault isolation. The library is packaged as versioned releases
to ensure the generated SFDP and the runtime are created using the same version of their
common dependencies (the GIN library components such as GIN Connector Spec models and
the code for generating and parsing the spec). The packaging allows two ways of usage:

- Pulling the sources or the build release (archive) from git and importing it into the
environment where the SFDP will run. This can be useful for local testing by
developers.

- Using the base image that includes the ASG-runtime for creating the SFDP image. This
way is preferable for the automated image creation as it simplifies and speeds up image
creation by eliminating the need to pull and build library sources every time SFDP
image is created.

4.3 THE ASG SOFTWARE ARCHITECTURE

In this section we zoom into the lower level of abstraction and present how the ASG
components are realised in software. All the code is written in python 3.12 and is available in
TEADAL's GitLab.

ASG-tool

ASG-tool is implemented as a simple front end to the GIN connector generating module (GIN
Spec Generator), adapted to the TEADAL use case. The additions are:

- a simple, OpenAPI-spec-like specification that describes the SFDP to be generated

- a module that parses this SFDP spec to retrieve the list of data endpoints to be exposed
by the generated SFDPs. For each endpoint, the code invokes the GIN generator to
create the suitable GIN Connector Specification

- a FastAPI app template (jinja2) that is used as a basis for the resulting SFDP server
app by creating the boilerplate (e.g., for the app initialization, hooking into the ASG-
runtime, service endpoints, etc.) of the app plus a placeholder for the required data
endpoints, each to be filled in with the generated GIN Connector Specification

- generic artifacts to become part of the resulting SFDP project repo, e.g.
the README.md, the requirements.txt, the Dockerfile, etc.

For completeness, we briefly present the SFDP Specification Format used by the ASG-tool
that contains only one top-level entry, sfdp_endpoints, that lists all the data endpoints that will
be available in the generated SFDP. Each item in this list represents a specific data endpoint
along with info about how it is derived from the data obtained from the source FDP.
The general structure of the specification file is presented in Figure 26 and explained below.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 52 of 76

FIGURE 26 SFDP SPECIFICATION SCHEMA

Each entry under sfdp_endpoints represents one data endpoint to be included in the generated
SFDP, named as the entry itself. Each such entry is a dictionary with the following elements:

- fdp_path: This key is required and must contain a string representing the path to the
corresponding endpoint existing in the source FDP. The string can contain
placeholders for dynamic segments (e.g., /stops/stop_id/{stop_id}).

- sfdp_path: This key is required and must contain a string representing the path to the
generated SFDP endpoint. It can mirror the placeholders in the source FDP path with
similar placeholders (e.g., /stop_id/{stop_id}).

- sfdp_endpoint_description: This element is optional and can contain a string with the
description of the generated SFDP endpoint. This is not required by the ASG tool and
is used only as part of the OpenAPI specification of the generated SFDP, to help SFDP
users by explaining the endpoints available from the generated SFDP.

- schema: This element is required and must contain a dictionary defining the schema
for the data to be returned by the data endpoint. This dictionary describes the data
properties along with their types and structures, as well as with the well-formed
descriptions that will help GIN to derive the required data items from data exposed by
the corresponding endpoint of the source FDP. The schema structure is a dictionary
named as the data structure it describes, with the following keys:

o type: (String) The type of the data described by the schema. The value is usually
an object to indicate a structured data object.

o properties: A dictionary that defines the properties of the data described by the
schema with type: object. Each property must contain name, type, and
description, formatted as specified next. Each data element returned by the
generated SFDP endpoint is specified as an entry in the properties dictionary.
The entries are named as the data elements they specify and contain the
following keys:

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 53 of 76

▪ type: This key is required and must contain a string defining the data
type for the property (e.g., integer, string).

▪ example: This key is optional and can contain an example value for the
property. This is not required by the ASG tool and is used only as part
of the OpenAPI specification of the generated SFDP, to help SFDP
users by illustrating a sample data value that conforms to the property's
type.

▪ description: This key is required and must contain a string describing
this property. This is used by the GIN generator as a guided prompt for
LLM to derive the way this property can be constructed from the data
exposed by the source FDP endpoint, namely, to select the right set of
transforms for the transforms library to be applied to the origin dataset.

ASG-tool code and documentation complete with installation and usage instructions can be
found in the project repository on GitLab10.

ASG-runtime

ASG-runtime library is architected to ensure:

- Separation of concerns between the minimal templated FastAPI app that handles only
the API layer and the bulk of SFDP functionality realised by the ASG-runtime

- Reusability: By putting the main class into your library, you make it easy to reuse across
services that differ only in source URLs or transformation logic.

- Maintainability: Keeping cache backends and HTTP boilerplate in separate modules
makes the system modular and easy to extend or test independently.

- Flexibility: You can easily swap in new cache backends, plug in new data sources, or
change transformation logic with minimal impact to the FastAPI app code.

ASG-runtime code and documentation complete with installation and usage instructions can
be found in the project repository on GitLab11. For ease of reference, Figure 27 shows module-
level repository structure for the ASG-runtime project.

FIGURE 27 ASG-RUNTIME MODULES

10 https://gitlab.teadal.ubiwhere.com/teadal-tech/asg_generation_code

11 https://gitlab.teadal.ubiwhere.com/teadal-tech/asg-runtime

https://gitlab.teadal.ubiwhere.com/teadal-tech/asg_generation_code
https://gitlab.teadal.ubiwhere.com/teadal-tech/asg-runtime

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 54 of 76

In what follows we briefly describe the most important individual modules that comprise the
ASG-runtime library to realize its functionality.

The Settings Module

Settings mechanism is based on Pydantic v2 settings, allowing:

- Per-app customization to disable or enable the caches, to select the caching backend
with its related parameters, to control logging, http behaviour, etc.

- Loading from environment variables or .env files

- Validation and the earliest possible error reporting

- Derived properties compute the effective configuration, e.g., when to bypass response
cache or use specific serializers

- Easy integration into Kubernetes, via ConfigMaps or Secrets

FIGURE 28.ENV FILE EXAMPLE FOR CONFIGURING SFDPS AT RUNTIME

The settings are loaded only once at SFDP app startup, from inside the library, and used for
the system initialization. In production environments where this can be a limitation, dynamic
reloading and reconfiguration can be implemented. In TEADAL Platform, the declarative k8s
control plane can be relied upon to reload the SFDP (basically, restart the old pods and start

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 55 of 76

up new ones) when configuration change is required. Figure 28 presents the .env file example
for configuring the ASG-runtime, and thus the SFDP, at runtime.

The Caches Module

The caching module is architected to support flexible selection of backend cache
implementations and injection of the serialization to be used at the boundary of the cache and
its user. There two main concepts developed to support this flexibility, the Cache Backends
and the Cache Roles, are described here, the serialization support will be described next as it
is a separate module and is used not only by the caches.

Cache Backends

The Cache Backends concept in the ASG-runtime enables flexible, maintainable, and future-
proof caching support for Shared Federated Data Products (SFDPs). This abstraction allows:

- Flexibility in swapping out caching implementations without changing application logic

- Maintainability through a unified interface, decoupling core logic from backend specifics

- Extensibility for future cache mechanisms (e.g., cloud-native caches or hybrid local-
remote setups)

The implementation is centered around a BaseCache class, which defines a common cache
interface and a set of abstract methods to be implemented by specific backends. As of this
writing, ASG-runtime provides three backends: LRU, DiskCache, and Redis, selected to
cover a range of TEADAL use cases (stateless vs. stateful, single-node vs. multi-node, etc.).
The architecture is deliberately open to supporting new backends in future iterations. Table 5
presents a brief comparison of several backends considered, with their pros and cons:

TABLE 5: CACHE BACKENDS CONSIDERED FOR INCLUSION

Option
k8s-
ready

Persistent
Multi-pod
Safe

Notes

Lru (in-memory)
Yes (per
pod)

No No
Fast, simple; per-process only; high memory use;
no external setup; does not require encoding

diskcache
Yes (per
pod)

Yes No Local disk-based; good for large objects; uses
SQLite under the hood

Redis (external
service)

Yes Yes Yes Fast and scalable; shared cache; requires external
Redis deployment and namespacing.

Redis (via fastapi-
cache)

Yes Yes Yes Uses Redis client within app; additional exposure
and config needed.

Redis (sidecar
pattern)

Yes No No Easier setup than external; isolated per pod;
limited utility.

Memcached
(external)

Yes No Yes
Fast, multi-node; limited persistence by being
memory-based and losing data on restart; external
config required

Sqlite (file-based)
Yes (per
pod)

Yes No Lightweight; easy local persistence; not shareable

Picle/joblib (local
files)

Yes Yes No
Simple for small objects; no concurrency handling;
dev-only use

Clous-native, e.g.,
AWS ElastiCache,
GCP Memorystore

Yes Yes Yes
Fully managed; scalable; vendor lock-in; access
and cost considerations; integration cab be difficult

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 56 of 76

Cache Roles

The dual-level approach to caching, supports two roles, the origin cache and the response
cache. Independent of the role the cache plays, all the caches reuse the same implementation
(backend, configuration, serialization) but differ in how they compute the keys, how they decide
on data revocation, and what driver is used to 'own' the cache.

Response Cache

- Stores transformed results for rapid repeated access and is especially useful when
original data is stable, but transformations are costly

- Keys are computed by hashing the endpoints’ GIN Connector Specification strings

- Cached objects are transformed and encoded response datasets

Origin Cache

- Stores raw data fetched from origin APIs as well as additional information optionally
provided by the origin server, in our case, the caching http headers (other options
considered described next)

- Keys are computed by hashing all the available REST call parameters used to retrieve
the data, namely, the URL with its path elements, parameters, etc.

- Cached objects are of two types:

o data: the dataset received from the FDP, cached under the origin cache key for
this endpoint

o headers: ETag/LastModified http headers, if they were provided by the origin
FDP, cached under a special key, created by appending a header prefix to the
origin cache key for this endpoint

▪ ETag (Entity Tag) → A unique hash that changes if the data changes.

▪ Last-Modified → A timestamp indicating when the resource was last
updated.

- The flow:

o when first fetching the data, we store, along with the data, the values returned
in the ETag or the Last-Modified headers or both

o when this dataset is requested again, we add data freshness validation headers
to the request we send to the origin FDP

o If-None-Match header when the ETag response header is available in the cache

o If-Modified-Since header when the Last-Modified response header is available
in the cache

o if the server responds with 304 Not Modified, we use the cached data

o if the server responds with 200 OK, get the new data and update the cache.

Alternatively, we could implement additional methods for validating the FDP data freshness,
e.g., sending a lightweight "Version Check" Request to the origin FDP. This could be more
predictable if supported by all the FDPs, e.g. by implementing data versioning and service
endpoints to retrieve the version. In production systems we recommend implementing this
functionality across all the FDPs in the TEADAL Federation and rely on it for cleaner origin
caching.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 57 of 76

There are additional alternatives that we have considered but did not implement. For example,
we could rely on TTL for refreshing the data, but this would be more complex and even less
predictable than the ETag/LastModified option, and we recommend against relying on
TTLs/SETEX for data freshness in production environments. Table 6 summarizes the options
with their pros and cons.

TABLE 6: OPTIONS FOR VALIDATING FDP DATA FRESHNESS

Option
Requires
FDP
support

Overhead

Pull vs
Push
Mechanism

Notes

ETag/LastModified
Headers

Yes

(standard)

Very Low, just
more headers

Pull
Widely supported by REST APIs;
enables conditional GET requests

Version Check
Endpoint

Yes

(custom)

Low, need to issue
small request Pull

Requires FDPs to expose a version
or checksum endpoint

Fetch on Expiry

(TTL-based)
No High Pull

Works with any source; requires
cache to handle TTL and auto-
refresh

Polling with Diffing No Medium–High Pull
App periodically re-fetches and
compares content; can be inefficient

Pub/Sub or Webhook
Notifications

Yes

(custom)
Very Low Push

FDP pushes invalidation/freshness
notifications; requires infrastructure
level trust

Signed Timestamp or
Expiry Field

Yes

(custom
metadata)

Low Pull
FDP embeds expiry metadata in
responses; simple to parse and
check

Both for the origin and for the response cache invalidation for removal of stale and unneeded
data can rely on TTL and other eviction methods. We did not evaluate this aspect in the context
of the current prototype, leaving it to be addressed in the production systems.

The Serializers Module

The serializers module is very simple and is described here for completeness only. Built
similarly to the caching module, as a base calls with its different specific implementations, it
allows injecting the most suitable encoding of the cached objects on a boundary between the
cache and between its callers. For example, if the cache can store non-serialized objects, e.g.
LRU cache, the system can be configured to use noop serializer for this cache to avoid
possibly costly encoding/decoding on cache boundary. For cases, where the cache requires
to receive bytes objects for caching, we inject an encoding serializer, depending on what type
is preferred in the runtime settings. At the time of writing, the system supports three serializer
implementations: a noop which avoids encoding/decoding, an orjson for fast encoding of the
result datasets, and pickle encoding, as middle ground. As with caches, the library allows
extensibility by adding additional custom serializers.

The Executor Module

The Executor is a singleton-like orchestrator, initialized once per SFDP app instance
execution, during FastAPI lifespan startup, and acts as a lifespan-injected app context used
by the app for serving all its endpoints. This is like having a service object in classic design
patterns. In a web context, this gives separation of concerns and clarity, especially as the
system grows. Note that Executor is the only ASG-runtime library object that SFDP apps must
know about.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 58 of 76

- loading, validating, and interpreting the settings

- instantiating logging and runtime objects such as caches, serializers, origin fetcher,
etc., according to the settings, ensuring initialization is centralized and robust

- communications with the FastAPI app executing the SFDP - returning results and
errors according to a well-formed minimalistic interface (see below)

- managing the response cache and encoding of the result datasets into json format
with orjson serializer

- coordinating fetch-transform-respond logic per data endpoint request, delegating data
retrieval & transformation to a GIN-dependent per-request driver objects explained next

- manages runtime lifecycle and access to it state such as:

o Shared caches

o Global settings

o Runtime stats / observability

o Logging / tracing

Executor-app interface is created to be as minimal as possible, with only few hooks exposed
by the Executor to the FastAPI app (SFDP):

1. async create method - load and initiate once; on failure, errors are logged and reported,
SFDP initialization is prevented

2. async get_endpoint_data method - receives GIN Connector Spec for the endpoint and
returns the result as a dictionary of "status" and details. The "status" can be "ok" or
"error". For "ok" status, the details contain the already encoded and ready to be sent
result dataset; in this case the app returns http 200 with the data with no additional json
encoding. For "error" status, the details contain the problem description; in this case
the app returns http 500 with the problem description. In production, return codes can
be further refined.

3. synchronized methods to support service endpoints; currently implemented methods
are:

- get_settings method - returns the currently applied settings as a dictionary

- get_stats method - returns the current values stored in the system wide counters

- clear_origin_cache and clear_response_cache - auxiliary convenience methods that
can be used to purge cases without restarting the app if needed.

The Request Driver Module (GinHelper)

While the Executor object contains all the global state of the executing SFDP, each request is
handled by a separate instance of the per-request driver object. As it is dependent on the GIN
library, the object is called GinHelper.

GinHelper abstraction encapsulates gin-specific logic needed for a single request:

- use GIN Parser to parse the GIN Connector specification into, roughly, the following:

o a list of objects that need to be returned in the response dataset

o a list of origin endpoints that must provide data for computing the result datasets,
including target FDP URL, endpoint path and any query parameters

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 59 of 76

o a list transforms that must be applied to origin datasets for computing the response
datasets

- use global OriginFetcher to collect all the required origin data (the fetcher will cache
data in a way transparent to the GinHelper)

- use GIN Executor to load and apply transformations

In addition, as part of GinHelper initialization for a specific request, after the GIN Connector
spec is successfully parsed, GinHelper is also responsible to create a cache key to be used
by the Executor for this request. This way, we decouple all the aspects of spec handling into
the GinHelper object and relieve the Executor about knowing its details. On the other hand, all
the caching done by the system is fully decoupled from the GinHelper and is transparent to it.
Same is true for the http access done by the OriginFetcher on behalf of GinHelper.

To apply the transformation of origin datasets into result datasets, GinHelper
uses transforms submodule from GIN Executor, almost as is. This code loads all the methods
at runtime from files in the transforms path provided as settings, applies the required
transformations, and returns the result. In the future, we envision refactoring this code to
become a separate module that will encapsulate the transforms functionality even further. For
example, this module could interface with an external Transforms Library service for obtaining
the methods as well as for providing feedback on runtime performance of individual transforms
back to the library, e.g. using protocol such as MCP. In addition, this module could cache the
loaded transformations for cases when dynamic reloading is not required, saving time, energy,
and compute resources. These advanced capabilities are out of the limited scope of the
TEADAL prototyping; thus, the system is currently limited to only the simple pandas-based
transformations that GIN Executor supports.

The http Module (OriginFetcher)

The http module implements all the boilerplate related to fetching data from origin FDP
endpoints. The main object exposed by the module is OriginFetcher, responsible for interacting
with the rest of the system, fetching the origin data with the help of its http client helpers,
caching the fetched results and their caching headers, and returning them to the caller as
transformation ready json datasets, so the caller does not have to deal with http objects such
as Response, Headers, etc. In the original GIN Library that does not support caching, all http
access is handled with synchronous requests library. For TEADAL, this code was refactored
to extract the domain specific behaviour into OriginFetcher object and to replace the http client
implementation with the asynchronous, httpx-based one. As a result, ASG-library features
reliable, asynchronous http communications with the FDP servers, supporting retries with
exponential backoff, paging, error handling, etc. In addition, refactoring allows for changing the
http client code separately and replacing the implementation as needed, although we did not
pursue exposing a clear interface for this in the scope of the project.

Serving SFDP Data Endpoints

We summarize the Software Architecture section by providing an overview of the steps
involved in serving data endpoints of SFDPs as components-flow diagram presented in Figure
29 and described below. To complete the picture, Figure 30 presents a sequence diagram for
the case the SFDP data request is served from the response cache and Figure 31 continues
to show what happens on Response Cache Miss.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 60 of 76

FIGURE 29 THE PROCESS OF SERVING THE SFDP DATA ENDPOINTS

- User issues a request to a running SFDP's data endpoint.

- SFDP app receives the request, obtains an Executor object from its runtime context,
and invokes the get_endpoint_data method. This method receives a GIN Connector
Specification string, embedded in each data endpoint (injected by the ASG-tool during
SFDP generation).

- Executor processes the spec:

o Creates a new GinHelper object to manage the request.

o GinHelper parses the spec:

▪ On error, informs the Executor → Executor informs the app → user
receives an HTTP 500 response.

▪ On success, informs the Executor and awaits further commands.

- Executor obtains caching key for the request from the GinHelper

- Executor checks the response cache (if enabled):

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 61 of 76

o On response cache hit, it returns cached result to the app

FIGURE 30 SERVING SFDP ENDPOINT DATA FROM THE RESPONSE CACHE

- On response cache miss, proceeds to request the result from GinHelper.

- GinHelper triggers data fetching:

o Requests OriginFetcher to fetch origin data for each origin endpoint referenced in
the spec.

- OriginFetcher fetches origin data for each endpoint:

o Checks the origin cache (if enabled):

▪ On cache hit, returns cached origin data.

o On cache miss:

▪ Uses its HTTP client to fetch JSON data from origin.

• On error: reports failure up the chain.

• On success, returns the data and caches it (if origin cache is
enabled).

- GinHelper invokes GIN Executor:

o Loads and applies all specified transforms

o Returns the result to the Executor

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 62 of 76

FIGURE 31 SERVING SFDP ENDPOINT DATA FROM THE ORIGIN

- Executor encodes the result using orjson encoder

- Executor stores the result in the response cache (if enabled)

- Executor returns the result or an error to the SFDP app

- SFDP app responds to the user with either the result or an error message

4.4 OPERATIONAL ASPECTS

After presenting the high-level design and the software architecture of the ASG system, we
briefly describe its operational aspects as part of TEADAL Platform.

Packaging

ASG components are packages as follows:

- ASG-tool is provided as a command line utility that imports GIN modules as dependency
and relies on Ollama service deployed on TEADAL as a driver for the generative AI
capabilities of GIN. We plan to enhance the tool itself to be packaged as image deployable
as TEADAL platform service as part of TEADAL Node and to expose a web interface in
addition to CLI. Additional possible enhancement, as already mentioned above, is to
integrate git repo creation and pushing.

- ASG-SFDPs are ultimately packaged as images deployable as TEADAL pilot services.

- ASG-runtime is packaged as a pip installable python package and as a base image the
SFDP images can be built FROM.

TEADAL Node integration

ASG components are packages as follows:

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 63 of 76

- ASG-tool is currently provided as a stand-alone tool not yet integrated to the TEADAL
Node. ASG-tool main runtime dependency, Ollama service with the preloaded model, is
integrated so developers that have access to the TEADAL Federation Nodes, can point
their ASG-tool to this Ollama service.

- ASG-SFDPs are ready to be integrated into TEADAL Nodes like any other FDP

- ASG-runtime does not need to be integrated; instead, it is used as a library by all the
deployed SFDPs.

SDFP Deployment and Configuration

After SFDP code is generated by the ASG-tool and its image is created and pushed to the
registry, its deployment requires the creation of k8s YAML files, kustomize files, rego files, etc.,
according to the contract under which the SFDP was created. Parts of this process require
human validation and approval and are thus manual. In addition, SFDP's deployment artefacts
can be further annotated with infrastructure- or resource-specific labels that can influence the
selection of deployment targets for the ready-to-go SFDPs.

To configure the SFDP, one should define values for the configuration parameters as
ConfigMaps. Attention is required when deciding on how to configure SFDP caching and this
deserves a separate discussion.

Enabling Caching

Selecting whether to cache the original data or the transformed data, or both, depends on the
nature of the origin and the transformed datasets transformation, the network availability, the
storage availability, the policy and additional system constraints. If the transformation is
lightweight, e.g., simple filtering, renaming fields, the FDP data is stable (static) and network
bandwidth is scarce, then caching the origin data and recomputing the transformation for each
SFDP request can be the best solution. Same applies if the origin data is stable but the
transformations are expected to be dynamic (injected for runtime loading and execution). On
the other hand, when the transformations are stable but computationally expensive, e.g. e.g.,
encryption, heavy filtering, aggregation, or when the computed dataset is significantly smaller
than the origin dataset and storage is scarce, it might be better to cache the response data. In
cases where the origin FDP data is very dynamic, caching should be disabled, while in some
other cases enabling both caches can benefit the system. In current implementation, caching
is enabled per SFDP instance and is applied across all the endpoints. For production systems,
the implementation can be easily adapted to make separate decisions per endpoint.

Selecting Cache Backends

Selecting the cache backend depends on the environment. After the backend is selected,
additional configuration might be required:

1. lru backend - no need for additional setup; you can only adjust the max_items setting
to regular memory size used by the cache

2. diskcache backend needs to write to a file so in k8s setting, there is a need to define
persistent volumes for it and coordinate its configuration with a disk_path setting:

3. redis backend might be the most useful but also requires the most attention and
configuration.

• If redis service already exists in the TEADAL Federation, it can be made available
to the running SFDP. In this case, we might need to define a namespace to isolate
ASG-SFDP objects from other objects managed by other components.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 64 of 76

• If TEADAL Federation does not have redis service available, it can easily be
created for ASG use and integrated in project GitOps like it's done for other platform
or infrastructure services. In this case, we also might want to isolate spaces used
by different SFDPs, depending on whether they belong to the same organizations
and/or whether there are policies requiring this isolation.

• Alternatively, redis can be deployed as a side car together with the SFDP. In this
case, no further namespace isolation is required.

• If redis service is going to be shared among SFDPs (the first two cases above), a
multi-tenant redis caching strategy is required. We have already discussed the
need for namespace isolation. In addition, a multi-tenant approach for cache
expiration and cleanup is required, as well as maybe some additional
synchronization (like, for example, disallowing any specific SFPD to purge caches
if it is running in this kind of setup). These complexities will have to be handled in
production TEADAL environments by infrastructure operators; covering all the
possible options is out of the scope of this report.

Runtime requirements of different caching options are summarised in the following Table 7:

TABLE 7: CACHE BACKEND CONFIGURATION

Option Configuration Parameter Runtime Requirements

lru
‘max_items’ – maximum number of numbers to
be stored in the cache

None; entirely in-memory and process-local

diskcache ‘disk’ – directory path for storing cache files
Requires a Persistent Volume (PV) to be mounted
and configured for data durability

Redis as a
Separate Service

‘redis_url’ – URL of the external Redis service
Requires an externally available Redis service;
typically configured via ConfigMaps. Optional:
namespace isolation for multi-tenant use

Runtime stats collection

ASG-runtime accumulates runtime stats for SFDP it backs up. For each cache, it accumulates
hits and misses along with the serializer’s stats such as the total amount of bytes before and
after the encoding and total time taken by encoding/decoding. For the http client, it
accumulates the number of requests issued, the number of bytes retrieved from the origin, and
the total time spent retrieving the FDP data. At the app level, it also accumulates the amount
of data requests received, served, and failed, the total bytes served, and the time taken by
serving the requests.

Some of the counters are exposed to SFDP users through /service/stats endpoint, as shown
in Figure 32. We do not spill out all the available counters, such as low level serializers stats,
in order not to confuse and to overwhelm the users.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 65 of 76

FIGURE 32 RUNTIME STATS EXPOSED BY ASG-RUNTIME ON BEHALF OF SFDPS

Telemetry

To enable observability at scale and support operational intelligence, the current runtime
statistics infrastructure in ASG-runtime can be extended into full-fledged telemetry by
integrating with Prometheus-based monitoring subsystem, enabling it to scrape, store, and
visualize SFDP-related metrics. To expose the already implemented stats as metrics in a
Prometheus-compatible format, we plan to use standard Prometheus Python client library and
to register two types of metric values:

- Prometheus Counters for showing accumulated stats as they are, as all our runtime
counters (hits, misses, byte counts, durations, etc.) monotonically increase during SFDP
execution

- Prometheus Histograms/Summaries for tracking per-request averages for latencies and
byte sizes over time (e.g., ‘request_duration_seconds’, ‘response_size_bytes’)

Once Prometheus metrics are available, dashboards can be created to offer insights useful for
Data Lakes Operators, for example:

- Cache Effectiveness: hit/miss ratios over time per cache layer, helping to identify redundant
fetches or poor reuse

- Network/Storage Efficiency Gains: aggregate bytes saved due to caching, distinguishing
between response cache and origin cache contributions

- FDP Dependency Health: latency and error rates for each origin FDP; slowdowns or
outages can be immediately visualized

- Load Characterization: requests per second, data served per SFDP, and peak usage
windows

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 66 of 76

- Encoding Overhead: time and size impact of different serializers across datasets

Metrics can be labelled as belonging either to the cache layer, to the http client, to the origin
FDPs and to the SFDP app itself. One example of such mapping is shown in Table 8:

TABLE 8 : EXAMPLE STATS-TO- METRICS MAPPING

Runtime Stat Prometheus Metric Name Type Labels

Requests received sfdp_app_requests_received_total Counter sfdp

Response cache
hits/misses

cache_resp_hits_total

cache_resp_misses_total
Counter cache

Origin cache
hits/misses

cache_orig_hits_total

cache_orig_misses_total
Counter cache

Bytes Served sfdp_app_bytes_served_total Counter sfdp, endpoint

Bytes Fetched fdp_app_bytes_fetched_total Counter fdp, endpoint

Time fetching from
FDP

sfdp_rest_fetching_duration_seconds Histogram sfdp, endpoint

Time
encoding/decoding

sfdp_serializer_duration_seconds Histogram format, stage

To further assist Data Lakes Operators, the following can be implemented by the monitoring
subsystem:

- Alerting rules: define thresholds for unusual patterns (e.g., 100% miss ratio, slow fetch
times) to trigger alerts.

- Auto-tagging metrics: attach Git commit/version, SFDP name, or dataset type to metrics
for deeper traceability.

- Push-based metrics: support for Prometheus Push gateway for edge deployments where
scraping is not feasible.

Table 9 presents the two options we have identified for integrating the telemetry pipeline as
part of ASG, with their pros and cons:

TABLE 9 : OPTIONS FOR INTEGRATING THE TELEMETRY PIPELINE

Option
Implemented
In

Metrics
Exposed Via

Advantages Considerations

FastAPI
app

In SFDP FastAPI
(included in the
ASG-tool template)

Served via /metrics
endpoint

(injected in static part of
the template)

- Reuses existing HTTP
stack
- Easier integration with
FastAPI routers

- Couples telemetry with
app logic
- Requires FastAPI
metrics middleware or
manual exposition

ASG-
runtime
library

Internal background
HTTP server

Served via separate port
(e.g.,
localhost:8001/metrics)

- Keeps observability self-
contained
- No changes to FastAPI
- Metrics available even
outside FastAPI

- Adds a second HTTP
listener
- Needs coordination with
Prometheus scraping
configuration

Sidecar
Exporter

Separate container
or thread

Metrics extracted from
logs or API

- Externalizes all telemetry
logic
- Reuses existing
exporters (e.g., log-based,
HTTP proxy)

- Adds operational
complexity
- May lag behind real-time
metrics or need custom
integration

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 67 of 76

With such telemetry pipeline, ASG-runtime can not only improve observability and debugging
but also provide evidence of performance and efficiency improvements gained through its
caching strategies, to help validating the project KPIs 3.2 and 3.2.

Given the TEADAL architecture's emphasis on modularity and clear separation of concerns,
integrating Prometheus metrics collection directly in the ASG-runtime library offers a clean and
reusable solution. It enables observability without modifying the lightweight SFDP FastAPI
apps, keeping them focused solely on serving data. This approach aligns well with the goal of
encapsulating SFDP runtime behaviour within the ASG layer. However, it introduces minor
operational complexity (e.g., an additional internal port), so collaboration with the TEADAL
monitoring subsystem team is recommended to ensure consistent Prometheus scraping setup
across the Nodes. Alternatively, teams requiring tighter integration with the app logic or
leveraging FastAPI-native monitoring may prefer the FastAPI-level implementation.

Deployment View

To summarize the operational aspects section, Figure 33 shows an example deployment
diagram for the ASG components.

FIGURE 33 AUTOMATION SUBSYSTEM DEPLOYMENT VIEW

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 68 of 76

5. THE OPTIMIZATION AND THE DEPLOYMENT SUBSYSTEMS

During the initial stages of the project (see D4.1 [7]), we envisioned data pipelines as explicit
sequences of transformation operations, applied to data in transit from a source Federated
Data Product (FDP) to a destination Shared Federated Data Product (sFDP). These pipelines
were expected to fulfil the contractual transformation requirements of data sharing agreements
while optimizing operational goals such as performance, energy efficiency, and locality,
addressing challenges such as data gravity and friction. Advanced concepts such as pipeline
composition (building complex pipelines from modular sub-pipelines), and pipeline partitioning
(for enabling distributed deployment of sub-pipelines) were also introduced. However, most
design attention was centered on optimizing, with Stretched Data Lake Compiler (SDLC)
based on MCC-C, and orchestrating their deployment, via the Stretched Data Lake Executor
(SDLE) based on Kubestellar, rather than on supporting their efficient and scalable
construction.

As the project progressed, several critical limitations of this approach became apparent. First,
manually constructing pipelines proved to be both time-consuming and skill-intensive, creating
delays incompatible with TEADAL’s vision of dynamic, user-driven federation workflows.
Second, for non-trivial pipelines, the envisioned optimization, solving for placement of all
pipeline components under multiple constraints, was not only computationally expensive but
also increasingly energy-inefficient, undermining the optimization’s own goals.

Understanding these limitations led to a fundamental shift in TEADAL’s approach, resulting in
the adoption of the ASG-based model described in this report. In this new approach, each
FDP-to-SFDP data transformation, documented as an agreement between the FDP Consumer
and the FDP Provider, is automatically created as a separately deployable data server
component. At runtime, each such component retrieves the data from source and applies the
transformations required by the agreement before serving the resulting data to its requestor,
without requiring global pipeline planning or optimization.

As detailed in Section 4, these transformation components can be lightweight, dynamically
loaded Python functions executed in-process (e.g., via REPL), or can invoke external
transformation services via API calls (e.g., REST). This flexibility allows transformation logic to
be substituted or adapted at runtime, by policy managers or infrastructure controllers, based
on performance or locality needs. Moreover, the transformation functions can originate from
pre-approved TEADAL libraries, user-provided scripts, or third-party components (e.g.,
discoverable via MCP interfaces).

This ASG-based approach affords three critical benefits. First, it drastically simplifies and
automates pipeline construction by shifting the focus from manual specification of all the
transformation steps towards the LLM-assisted generation of SFDPs based on negotiated
agreements, including creation of transformation chains for each of its data endpoints. This
makes SFDP creation feasible even for non-expert users and, in addition, simplifies their
operation as a single deployable unit instead of a fragile sequence of processes/jobs. Second,
it enables cross-pipeline optimization by recognizing shared or co-located transformation
components and reusing or scaling them intelligently. Third, and most importantly, it defers
certain optimization decisions to runtime. For instance, an sFDP can be deployed near the
data source and the data requesters, optimizing latency and system load at that moment. If
system conditions later change, instead of recomputing a full pipeline deployment, the runtime
can adjust only the necessary transformation implementations or their placements, without
breaking the data contract or disrupting service continuity. This makes the system significantly
more adaptable and robust than the original, monolithic pipeline optimization model.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 69 of 76

As an additional bonus, transitioning to the ASG-based approach to data pipelines allowed us
to re-scope both the optimization and the deployment subsystems of the TEADAL Control
Plane. For example, for the newly created pipelines, the previous approach required global
pipeline optimization followed by the distributed orchestration of deploying potentially many
components on potentially several nodes. The new approach only requires a rather simple
selection of the SFDP deployment target among the Federation’s TEADAL Nodes, followed by
dispatching the SFDP for deployment on a selected Node. Like previously, the placement
decision should still be informed by system wide metadata such as policies, resource
allocations, and monitored runtime data. In addition, like previously, runtime controller-
watchers need to be installed to make the required runtime adjustments when needed. Still,
the overall complexity of both the optimization and the deployment subsystems is greatly
reduced as presented in the next two subsections that follow.

5.1 THE OPTIMIZATION SUBSYSTEM

In the ASG-based architecture, the role of the optimizer is substantially simplified compared to
the original design, but it is no less essential. Its core responsibility is twofold: (1) initial
placement decision-making for newly generated sFDP servers, and (2) continuous runtime
observation and adjustment of deployed components to maintain operational efficiency and
contract compliance under changing system conditions.

Initial Placement Decision

While the shift to ASG-based sFDP generation eliminates the need for a full-blown, centralized,
multi-objective optimization of multi-component pipelines, it does not eliminate the need for
placement optimization. Instead, it reframes the requirements towards a more localized,
lightweight form of optimization focused on selecting the deployment target for the
automatically generated sFDP server app.

With the ASG-based approach, when a new sFDP is automatically generated, typically in
response to a data access agreement, it has to be deployed on one of the available TEADAL
Nodes (i.e., Kubernetes clusters across the federation). So, the optimizer is basically
responsible for selecting the most appropriate TEADAL Node (i.e., Kubernetes cluster) for
hosting this new sFDP. This placement must account for multiple factors:

• Proximity to data sources and expected consumers (to minimize latency and cross-
site data transfer costs),

• Resource availability on candidate Nodes (e.g., CPU, memory, GPU if needed),

• Transform service locality, i.e., whether relevant transformation services or reusable
components are already running nearby,

• Policy constraints, such as jurisdictional data handling rules or energy-efficiency
goals.

The decision is made once per sFDP generation and should be lightweight, fast, and
explainable. It can leverage monitored metrics (e.g., current load, network Round Trip Times
or RTTs, recent query patterns), as well as declarative resource requests encoded in the
SFDP’s deployment spec (e.g., via custom Kubernetes labels or annotations). After the
TEADAL Node is selected, in-cluster placement is delegated to the local Kubernetes control
plane, which handles finer-grained scheduling (e.g., pod-to-node assignment) using standard
Kubernetes mechanisms, possibly enhanced with additional labels for declaring resource
requirements.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 70 of 76

This lightweight placement optimization can leverage parts of the previously developed
Stretched Data Lake Compiler (SDLC) particularly those components designed to ingest
runtime metrics collected by the monitoring subsystem and declarative resource requirements
(e.g., labels indicating memory needs, latency sensitivity, or preferred data regions). Runtime
monitoring data can also inform decisions by helping estimate expected load, transformation
reuse opportunities, or proximity to frequently queried data sources.

In summary, the optimization subsystem remains a key component of TEADAL’s control
architecture, but its scope is now streamlined. Rather than attempting to optimize entire
transformation graphs globally, its role is to make fast, context-aware deployment decisions
for individual sFDP servers, aligning them with dynamic system state and operational goals.

Runtime Adjustment via Optimization Controllers

After deployment, sFDPs may continue to run under evolving conditions: changes in load, new
transformation capabilities becoming available, or shifts in data source access patterns. To
handle this, dedicated optimization controllers monitor runtime state and can trigger
adjustments when necessary. These adjustments may include:

• Injecting or substituting transformation implementations dynamically, e.g.,
switching from an in-process Python function to an external high-throughput service
when load increases,

• Rebinding transformation endpoints to closer or more efficient service instances
(e.g., when a cached transformation becomes hot and is replicated),

• Triggering re-deployment of an sFDP to a more suitable Node, in extreme cases
where relocation offers significant benefit and is feasible under contract and SLA terms.

These controllers operate as Kubernetes operators: watching resource state and responding
to declarative goals or policy conditions. They are aware of the ASG semantics and can reason
about the relationship between data contracts, transformation chains, and deployment
structure.

In effect, this runtime optimization capability allows TEADAL to defer certain placement or
adaptation decisions until better runtime knowledge is available, trading pre-deployment
complexity for runtime agility. The system becomes more resilient, elastic, and self-optimizing
without requiring full pipeline redeployment, a key limitation of the original approach.

Architecture Updates

This lightweight placement optimization can leverage parts of the previously developed
Stretched Data Lake Compiler (SDLC) particularly those components designed to ingest
runtime metrics collected by the monitoring subsystem and declarative resource requirements
(e.g., labels indicating memory needs, latency sensitivity, or preferred data regions). Runtime
monitoring data can also inform decisions by helping estimate expected load, transformation
reuse opportunities, or proximity to frequently queried data sources.

Eliminate Kubeflow Dependency

In the initial approach to data pipelines, they were conceived as Direct Acyclic Graphs (DAGs)
of transformation steps, requiring end-to-end pipeline composition, partitioning across clusters,
complex optimization across many stages, and often also model-based tuning (e.g., ML for
placement, performance prediction). In that context, Kubeflow made sense with, for example
Kubeflow Pipelines selected to model and orchestrate complex pipelines and Katib to

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 71 of 76

automate hyperparameter-style search for optimal pipeline configurations or placement
heuristics. Although Kubeflow is a functionally beneficial multi-step pipeline engine, its reliance
on ML-heavy tooling turns it to a heavyweight overhead, adding complexity and degrading
efficiency.

In the ASG-based model, we generate one deployable sFDP per agreement, not long
convoluted pipelines. The transformation chains are still present but now as declarative
specifications contained as part of every data endpoint of the new SFDP (GIN Connector
Spec). As a result, placement decisions are made per individual self-contained data servers,
not for complex DAGs. This allows the optimization to be far more lightweight than a full
combinatorial problem before. Runtime optimization can be reactive and local, handled by
custom controllers and not by the retrained ML models.

In short, adoption of the ASG-based approach to data pipelines, allows us to eliminate the
dependency on Kubeflow and to overall achieve simple architecture, faster optimization
integrations, potentially better explainability of the optimization decisions (this can be crucial
for compliance in some industries), and lower resource consumption achieving the energy-
efficiency goals better than before (see full description of the approach in D3.3 [10]).

Adapting the Stretched Data Lakes Compiler (SDLC)

TEADAL’s already demonstrated SDLC12 component, designed to analyse, optimize, and
enrich data pipelines was designed to ingest Kubeflow pipelines and apply optimization to
produce placement recipes, while addressing key optimization objectives, with a primary focus
on resource optimization, and other crucial constraints.

To adapt it to the new ASG-based approach, it must be refactored to receive simpler inputs
while still leveraging the various data and resource inventory services, including the Catalogue,
as well as the Federation’s resource inventory. Here is the list of metadata SDLC uses in order
to compute the result:

• Metadata about source datasets. From the Catalogue, SDLC receives information and
metadata about the source FDPs that the SFDP needs to get data from, e.g. FDP
service location, dataset size, cardinality, and more.

• Metadata about the Federation. To perform the optimization, SDLC needs access to a
detailed inventory of available locations (i.e., TEADAL Nodes or clusters) for pipeline
execution. This inventory is planned as mostly static YAML manifests fully describing
TEADAL Federation, its members, resources, users, policies, etc.

• Metadata about transformations, e.g., the input-output ratio of tasks, what columns
being read and/or written, the nature of updates to the columns being written (e.g.,
append-only, overwrite). At first, the pipeline-based design was expecting users to
annotate the transformations with this type of metadata. It was quickly understood,
however, that having to specify some of the task characteristics could be too much of
a burden to FDP developers/designers and also can result in inaccurate
estimates/measurements. As a result of this understanding, and exploratory activity
towards trying to predict these characteristics, possibly using LLMs, inspired by work
done by the database optimization community. With an ASG-based approach, this data
can be included as part of the transformations library, including by dynamically adding
the collected performance characteristics.

• Metadata about the operational environment, e.g. the bandwidth between locations,
the availability of hardware resources, and the geographic location of compute clusters.

12 TEADAL Tech / stretched-data-lake-compiler · GitLab

https://gitlab.teadal.ubiwhere.com/teadal-tech/stretched-data-lake-compiler

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 72 of 76

In addition to receiving the target data pipeline as an annotated Kubeflow manifest and the
required metadata, the optimizer needs to know its optimization objectives (e.g., minimizing
the data transfer, the energy consumption, the cost, the execution time, etc.)

Internally, SDLC computes internal representation of its inputs and executes the solver to
resolve the constraints. The result of the SDLC execution is a Kubeflow pipeline enriched with
optimization decisions indicating the most suitable clusters for their execution. This also needs
to be adapted to just produce the prioritized list of deployment targets for the input SFDP.

To summarize, Table 10 presents the adaptations required to make the SDLC working as part
of the ASG-based approach. Alternative options could be and will be considered if
time/resources will permit.

TABLE 10 : ADAPTING SDLC TO WORK WITH ASG

Aspect
Current SDLC
Design

Plan towards
ASG-SDLC
integration

Notes

Input: data pipeline for
placement

Kubeflow Pipeline
Manifests generated as
part of FDP-SFDP
agreement

Easy to adapt.

ASG-SFDP can be presented as a
single step pipeline.

Metadata annotations can be
missing.

Input: Location
constraints for tasks

Manual addition
Might be not needed.

Can be designed into the
Transforms Library

Input: Metadata about
datasets

Manual at first, the
obtained through
Catalogue APIs

Catalogue APIs

Can be obtained through the
monitoring subsystem from the
already deployed data products
that support telemetry

Input: Federation’s
Resource Inventory

Kubestellar Resource
Inventory

Inventory defined and
maintained by Data Lake
Operators as YAML
manifests

Even in Kubestellar Resource
Inventory would need to be based
on source of truth provided by the
operators

5.2 THE DEPLOYMENT SUBSYSTEM

In the ASG-based model, the Deployment Subsystem is responsible for realizing the
optimizer's placement decisions and ensuring that sFDP components are correctly and
consistently deployed across the Federation’s TEADAL Nodes. While the first project iteration
focused on sophisticated orchestration logic for deploying graph-shaped pipelines with
complex interdependencies, the shift to single-component sFDP servers has significantly
reduced the deployment complexity. However, the challenge of multi-cluster, policy-aware, and
GitOps-compatible deployment orchestration remains central to TEADAL’s operational model.

Evolving Landscape of Multi-Cluster Orchestration

Since TEADAL's inception, the Kubernetes ecosystem has seen significant advancements in
multi-cluster management. Organizations now routinely operate numerous clusters across
diverse environments, including cloud, on-premises, and edge locations. This proliferation has
led to the emergence of several tools and managed platforms designed to simplify multi-cluster
operations, some by well-established and trusted vendors and cloud providers:

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 73 of 76

• Rancher13: Provides centralized management for multiple Kubernetes clusters, offering
features like unified authentication, access control, and monitoring.

• Google Anthos14: Enables consistent application deployment and operations across
hybrid and multi-cloud environments, integrating with existing Kubernetes clusters.

• Azure Arc15: Extends Azure management capabilities to Kubernetes clusters running
outside of Azure, facilitating unified governance and policy enforcement.

• Spectro Cloud Palette16: Offers a platform for managing Kubernetes clusters across
various infrastructures, emphasizing flexibility and customization.

These and other solutions underscore the industry's shift towards more sophisticated and
scalable multi-cluster management approaches. Most solutions available as a service are
feature rich and affordable making investment in creating a do-it-yourself solution less
attractive than few years ago when the solution space was fresh and open to innovations and
there many competing open-source projects exploring the space (see the survey included in
the previous deliverable of this work package [8]).

While initially it was planned to use Kubestellar, due to change of direction taken by the project.
Looking for a replacement project to integrate, we created the survey reported in D4.2 [8] and
discovered that most projects are fading away, either turning into vendor-backed managed
solutions or just disappearing. As our WP4 focus has pivoted towards AI-driven automation
and declarative methodologies, the initial plan to utilize open-source tools like Kubestellar for
cross-cluster orchestration was set aside, in alignment with project priorities and with the
broader industry trend of leveraging existing, mature tools rather than developing bespoke
solutions from scratch.

As a result, we envision that in production TEADAL Platform will be realized using production
solutions of choice selected by the Data Lake Operators. For prototyping and demonstration
purposes, we have decided to scaffold simple yet functionally sufficient do-it-yourself multi-
cluster deployment subsystem relying on a lightweight control loop built around two custom
TEADAL CRDs:

• TeadalFederation, which represents federation-wide configuration, including the list of
participating TEADAL Nodes (clusters), their access configurations (e.g., kubeconfig
secrets), and shared policy metadata.

• TeadalDataProduct, which represents a deployment intent for a single sFDP, including
its container image, resource requirements, labels, and transformation metadata.

A TEADAL Controller component, written in Python and deployed either centrally on a
dedicated Node or replicated across the Federation’s Nodes, is initiated with the (mostly static)
TeadalFederation resource that contains information about the Federation buildup. In addition,
the controller watches for new TeadalDataProduct resources. Upon detecting one, it performs
the following sequence:

1. Node Selection: Using the metadata in the TeadalFederation and the placement
decision produced by the Optimization Subsystem, it selects the target Node (cluster)

13 Enterprise Kubernetes Management Platform & Software | Rancher

14 Anthos Powers Enterprise Container Platforms | Google Cloud

15 Azure Arc – Hybrid and Multi-Cloud Management and Solution

16 What is Palette? | Palette

https://www.rancher.com/
https://cloud.google.com/anthos
https://azure.microsoft.com/en-us/products/azure-arc
https://docs.spectrocloud.com/

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 74 of 76

for deployment. Note that in the pipeline-based design, final selection of the target Node
for the pipeline deployment out of the prioritized list of nodes computed by the SDLC,
is also under the responsibility of the Stretched Pipeline Executor.

2. GitOps Dispatching: It pushes the corresponding sFDP deployment YAML (or
Kustomize patch) to the Git repository associated with the selected Node. This
repository is continuously watched by a GitOps agent (e.g., Argo CD) running on that
Node.

3. Deployment Execution: The GitOps agent applies the new resource manifests to the
local cluster, ensuring that the sFDP server is started, monitored, and automatically re-
synced if drift occurs.

4. Status Tracking and Reconciliation: The TEADAL Controller periodically queries the
Kubernetes API of each Node to monitor deployment status and health. If failures or
delays are detected, it can trigger re-dispatch, fallback logic, or even re-optimization if
allowed by the sFDP’s contract.

This architecture ensures a clean separation of concerns:

• Optimization logic is kept lightweight and dynamic.

• Deployment logic is delegated to GitOps mechanisms per cluster, ensuring local
consistency and minimal central coordination.

• Monitoring and adaptation happen through federated observation of runtime metrics,
fed back into both optimization and deployment decisions.

Importantly, this structure also supports TEADAL’s vision of zero trust. Since each TEADAL
Node has autonomy over its local GitOps, deployment compliance with organizational
constraints is preserved, avoiding the need for a centralized orchestrator with direct write
access to remote clusters. Finally, this TEADAL deployment flow integrates tightly with the
ASG toolchain. As soon as a new sFDP is generated, its deployment spec is automatically
registered as an SFDP CRD, closing the loop from agreement creation to operational
deployment. This supports dynamic, on-demand federation scenarios where data sharing
workflows can be rapidly created, deployed, monitored, and adapted, entirely through
declarative resources and lightweight control logic.

Note also that in the pipeline-based approach, the deployment component (the Stretched
Pipeline Executor) was also assumed responsible for orchestrating the communications
between the different sub-pipelines, especially when they are set to run in separate clusters,
sending output of one sub-pipeline to another pipeline as input. With an ASG-based approach,
we do not envision the need for dedicated connectivity management beyond what is already
provided by the TEADAL Platform that ensures policy-driven connectivity in a way implicit to
the data users.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 75 of 76

6. SUMMARY

Final architecture and realization of the TEADAL control plane described in this report puts
forward several major innovations.

First, the automation subsystem enables SFDPs to be implemented as lightweight, self-
contained API-driven data services that act as controlled intermediaries between FDPs and
their consumers. These SFDPs are generated using a templated application framework and
at runtime are backed by a shared library. This approach facilitates rapid development,
consistent deployment, and unified runtime management of SFDPs across the TEADAL
Federation, in alignment with the rest of the TEADAL Platform, including TEADAL Nodes
integration, policy management, Catalogue flows, etc.

Next, to further enhance the operational capabilities of SFDPs and the TEADAL infrastructure
at large, the platform integrates intelligent monitoring and optimization strategies. These are
driven by rich runtime metadata and AI-based analysis pipelines. The AI-Driven Performance
Monitoring (AI-DPM) framework presented in (section ref) complements the Stretched Data
Lakes by enabling proactive resource management, anomaly detection, and performance
prediction across the TEADAL Nodes, all critical to achieving the platform’s trust, sustainability,
and efficiency goals.

Another important innovation is related to exploring applicability of LLMs across the board of
the WP4 tasks. As a result of this exploration, we present the ASG-tool, the RBAC policy
generation app, and the LLM based data analytics.

Additional innovation is related to the Transformations Library Concept that will certainly be
further explored towards better automation, e.g. annotating the tools with their functional and
performance characteristics, and towards potential alignment and integration with emerging
industry trends such as MCP. Future work includes exploring MCP-compatible exposure of
TEADAL’s transformation assets, enabling LLM-based orchestration and discoverability of
reusable components across the federation, potentially turning TEADAL into a reference model
or early prototype of MCP-aligned architectures.

Assets created by the WP4 team are designed in alignment with the overall TEADAL
Architecture and Platform design. Some components are already integrated into the platform
and available for pilots while some are in the process of integration and validation.

 D4.3: Stretched data lakes - Final Report (V 1.0)

© 2022-2025 TEADAL Consortium Page 76 of 76

REFERENCES

[1] TEADAL Consortium, D2.1, Requirements of the Pilot Cases, Mar 2023

[2] TEADAL Consortium, D2.2, Pilot Cases Intermediate Description and Initial Architecture
of the Platform, Nov 2023

[3] TEADAL Consortium, D2.3, Pilot Cases Final Description and Intermediate Architecture
of the Platform, Aug 2024

[4] TEADAL Consortium, D2.4, Final General Architecture, due May 2025

[5] TEADAL Consortium, D6.1 Testbed Design, November 2023

[6] TEADAL Consortium, D6.2 Integration Report, August 2024

[7] TEADAL Consortium, D4.1 Stretched Date Lakes, First Release Report, Jan 2024

[8] TEADAL Consortium, D4.2 Stretched Date Lakes, Second Release Report, Oct 2024

[9] TEADAL Consortium, D3.2 Reducing energy footprint in federated stretched data lakes,
2024

[10] TEADAL Consortium, D3.3 Privacy/confidentiality definition approach, due May 2025

