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EXECUTIVE SUMMARY 

The TEADAL project empowers organizations to securely collaborate on data-driven tasks 
across distributed infrastructures. It introduces a novel architecture for federated data 
sharing, allowing participating organizations to contribute, transform, and consume 
datasets, efficiently and under well-defined policies. Key to this architecture is the concept 
of a Federated Data Product (FDP), which is a shareable REST endpoint for exposing 
organizational data, and of a Shared Federated Data Product (sFDP), created to expose 
the FDPs across organizations in a controlled way. TEADAL implements this architecture 
using Kubernetes-based deployments and GitOps practices to maintain consistency and 
security across the federation. 

This document reports on the outcomes of Work Package 4 (WP4) within the TEADAL 
project. WP4 focuses specifically on realizing and managing cross-organizational data 
flows, originally conceptualized as "stretched data lakes" and evolved over time into a more 
modular and runtime-oriented architecture. The contributions described here include 
design, prototyping, and tooling that together allow shared federated data pipelines to be 
declaratively specified, consistently deployed, and programmatically observed. These 
results directly support the broader architectural goals of TEADAL and provide practical 
mechanisms to implement and govern data flows as part of shared infrastructures. 

These are the main functional modules provided by WP4: 

1. Monitoring subsystem, realized as AI-driven Performance Monitoring (AI-DPM) – a 
set of components responsible for collecting runtime operational data from nodes in 
TEADAL federation, including data on server performance and energy usage, 
analysing this data to create actionable insights such as predictions and alerts. Insights 
made available by these components are used by the control plane for selecting the 
most suitable deployment targets for the TEADAL data products.  

2. Automation subsystem, realized as Automatic SFDP generation (ASG) – a set of 
components that assist developers in creating SFDPs to share data exposed by the 
existing FDPs according to agreements achieved between the data provider and the 
data consumer. ASG relies on generative AI capabilities for selecting data 
transformations that need to be applied to the source datasets. ASG is working as part 
of the SFDP creation flow facilitated through the TEADAL Catalogue, as briefly 
presented here for completeness. ASG also includes a runtime library for unified 
runtime execution and control of the generated SFDPs. 

3. Optimization subsystem, responsible for selecting the deployment targets for SFDPs 
at runtime among the TEADAL Nodes in the federation, based on the operational data 
and insights provided by monitoring subsystem as well as on the labels attached to the 
infrastructure to signify the capabilities of individual infrastructure components. 

4. Deployment subsystem, or the multi-node control plane responsible for deploying the 
data products and initiating their runtime monitoring. 

In addition to presenting these major components, the report describes their relationship 
with the components developed in other technical work packages (WP3 and WP5), their 
roles for use cases presented by the TEADAL pilots, and their planned contribution to the 
KPI validation to be performed in the final stage of the project, M34-M36, as part of WP6. 
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1. INTRODUCTION 

In an increasingly data-driven world, the ability of organizations to securely and efficiently 
collaborate across infrastructure and institutional boundaries is becoming a strategic 
imperative. From scientific research to smart manufacturing and public services, data is both 
the fuel and the product of digital operations. However, the realities of distributed 
infrastructures, heterogeneous technologies, and complex governance models often make 
cross-organizational data integration costly and brittle. The TEADAL project addresses this 
challenge by introducing a principled architecture in WP2 (see deliverables D2.1 [1], D2.2 
[1][2], D2.3 [3], and the upcoming D2.4 [3][4]), and platform design in WP6 (see deliverables 
D6.1 [5] and D6.2 [6]) for the concept of federated data sharing that prioritizes trust, policy 
compliance, and operational efficiency. 

At the heart of this vision is the concept of the Federated Data Product (FDP): a shareable, 
API-exposed data interface encapsulating a dataset maintained by an individual organization. 
FDPs are designed to respect local autonomy, security, and domain-specific control. Yet, to 
fully enable cross-organizational data reuse, TEADAL introduces a complementary concept, 
the Shared Federated Data Product (SFDP). SFDPs act as intermediaries: policy-enforced, 
transformed, and traceable views of underlying FDPs, accessible across organizational 
boundaries. 

The broader TEADAL platform operationalizes this architecture using Kubernetes-based 
deployments, GitOps-style control, and declarative specifications. In this way, data flows 
become programmable, inspectable, and composable. Moreover, AI-powered monitoring and 
LLM-assisted development tools further reduce the barriers to adoption and help manage the 
complexity inherent in federated data landscapes. 

This document reports on the final design and implementation of the technical components 
delivered as part of Work Package 4 (WP4). WP4 focuses specifically on the realization and 
governance of cross-organizational data flows, originally described as "stretched data lakes," 
and now more concretely implemented as runtime-deployable SFDPs. These contributions are 
designed to integrate seamlessly with the other TEADAL services (notably AI-DPM and Control 
Plane) and to serve the needs of pilot users across various domains. The following subsections 
provide a more detailed orientation to the objectives and structure of this report. 

1.1 PURPOSE AND SCOPE 

This report consolidates the software, design decisions, and implementation outcomes of WP4 
within the TEADAL project. It covers three major innovations: 

- The design and delivery of an AI-driven Performance Monitoring subsystem (AI-DPM), 
which collects and analyses operational data (e.g., performance, energy consumption) 
to guide infrastructure-aware deployment decisions. 

- The development of an Automatic SFDP Generation (ASG) subsystem, which assists 
developers in specifying, generating, and executing SFDPs with the help of LLM-based 
tools and a shared runtime library. 

- The updates and finalization of the TEADAL control plane’s optimization and 
deployment subsystems, that use declarative specifications and monitoring feedback 
to select appropriate deployment targets and manage the lifecycle of SFDPs across 
the federation. 

In addition to reporting on each component, the document explores their integration into the 
TEADAL architecture, their application in real-world pilot deployments, and their contribution 
to achieving the TEADAL project's requirements. 
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1.2  CONTEXT: TOWARDS DECLARATIVE CONTROL OF THE AI-
POWERED DATA PLATFORM 

Our approach to Stretched Data Lakes and Control Plane reflects on and supports the 
important architectural decisions made as part of TEADAL: 

1. Declarative control: Right from the beginning, TEADAL has selected Kubernetes as 
its underlying infrastructure controller. In WP4, we support this choice by leveraging 
the declarative Kubernetes control plane and its ability to define Custom Resource 
Definitions (CRDs) for implementing domain-specific capabilities. In addition, we 
reinforce this declarative approach through the ASG subsystem, which enables data 
users to specify "what" data products should do rather than "how" they should be 
implemented. As a result, SFDP creation becomes a largely hands-off, declarative 
process. The resulting SFDPs are standardized microservices that fit seamlessly into 
the Kubernetes-based control plane, ensuring modularity, automation, and reuse as 
part of the TEADAL Platform. 

2. Federated trust and control: According to the TEADAL Architecture, each 
organization maintains sovereignty over its data and its FDPs, while the TEADAL 
platform ensures cross-cutting enforcement of data-sharing agreements. In WP4, we 
support this principle by creating SFDPs as standardized microservices that can 
leverage the same policy management and enforcement mechanisms developed for 
FDPs. Furthermore, our implementation of data transformation pipelines within SFDPs 
enables runtime policy controls, for example, by injecting concrete implementations of 
generic transform functions based on deployment context. 

In addition to the above, our approach has evolved to adopt the emerging trend of applying AI 
for managing distributed infrastructures and supporting data engineering workflows. 

AI and LLM integration: TEADAL embraces the growing role of AI in managing complexity 
across distributed data infrastructures. On the operational side, AI-driven observability and 
optimization, commonly known as AIOps, are used to monitor and control deployments based 
on real-time infrastructure conditions. In TEADAL, this is embodied in the AI-DPM subsystem, 
which applies AI models to performance and energy data to guide intelligent deployment 
decisions. On the development side, the rise of Large Language Models (LLMs) is transforming 
the way users interact with complex technical stacks. TEADAL’s ASG subsystem explores how 
generative AI can be leveraged to automate key aspects of Shared Federated Data Product 
creation, including endpoint specification, transformation chaining, and runtime deployment 
configuration. This allows developers to work at a higher level of abstraction, using natural 
language prompts or assisted templates rather than manually writing code and YAML 
specifications, reducing the skill threshold for developers and accelerating the creation of 
SFDPs that conform to both technical standards and policy constraints. Together, these AI-
enhanced capabilities position TEADAL at the forefront of intelligent, federated data platform 
design. 

Emerging alignment with Model Context Protocol and Model Catalog Platforms (MCPs): 
An emerging direction, particularly relevant for the ASG subsystem, is the potential alignment 
with Model Context Protocol1 and the Model Catalog Platforms powered by this protocol. 
Originally designed for sharing and managing AI/ML models, Model Catalog Platforms are now 
evolving to support broader ecosystems of reusable, composable assets, including data 
transformation methods, pipelines, and APIs. By adopting the open Model Context Protocol, 
created to enable seamless integration between LLM applications and external data sources 

 

1 Model Context Protocol · GitHub 

https://github.com/modelcontextprotocol


 D4.3: Stretched data lakes - Final Report (V 1.0) 

© 2022-2025 TEADAL Consortium Page 12 of 76 

and tools, TEADAL could expose its transformation library as a searchable, machine-readable 
catalog. This would not only improve human usability and model-assisted discovery but also 
position TEADAL to integrate with other tools that rely on MCP conventions. As generative AI 
systems increasingly rely on structured interfaces to invoke external capabilities (e.g., tools, 
functions, plugins), MCP-style publication of TEADAL transformations could help unlock AI-
powered orchestration and semi-automated data engineering. While still exploratory, this 
direction promises to reinforce TEADAL’s commitment to openness, modularity, and future-
ready design. 

1.3 DOCUMENT STRUCTURE 

The remainder of this document is organized as follows: 

- Section 2, Stretched Data Lakes, provides an overview of how the initial "stretched data 
lakes" concept has evolved into the modular, modern, declarative, and runtime-oriented 
architecture presented in this report. In addition, this section presents the platform 
integration aspects of the WP4, including the Catalogue flows involved in SFDP creation 
and the RBAC integration. 

- Section 3, The Monitoring Subsystem (AI-DPM), describes the monitoring subsystem of 
TEADAL Control Plane, an AI-driven performance monitoring (AI-DPM). The section 
presents the AI-DPM components, the data they collect, the algorithms they use, and the 
insights they provide for other Control Plane subsystems, such as runtime observability 
and optimization. 

- Section 4, The Automation Subsystem (ASG), presents the automation aspect of the 
TEADAL Control Plane, an ASG subsystem. The section discusses the benefits of applying 
generative AI for automating data access and processing and describes the ASG 
subsystem including its design rationale, tooling, software architecture, and deployment 
model. 

- Section 5, The Optimization and the Deployment Subsystem, iterates on the control plane 
aspects that were already presented in prior deliverables of this work package while 
refining them to be in line with the updated WP4 architecture and technology stack of the 
TEADAL Node in its finalized form. 

- Section 6, Summary, concludes the document with a summary of the work performed, its 
integration with other work packages, and contributions to TEADAL's goals and validation 
KPIs. In addition, we outline the roadmap to impact, and present possible directions for 
follow up research. 
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2. STRETCHED DATA LAKES 

This section presents the architecture developed in WP4, explaining both how it supports key 
TEADAL project requirements ([2][3][4]) and how it integrates with the TEADAL platform  
([5][6]). WP4’s contributions are centered on automated creation of SFDPs according to data 
sharing contracts negotiated between the FDP Consumers and the FDP Providers, as well as 
on the deployment and the runtime management of the generated SFDPs. 

2.1 REVISITING THE “STRETCHED DATA LAKES” CONCEPT 

The term “stretched data lakes” was originally introduced during the early stages of project 
planning, with the intention to encapsulate challenges related to creating, deploying, and 
managing data flows and data transformation and processing pipelines across distributed and 
heterogeneous infrastructure environments. It was planned that “stretched data lakes” will 
establish the data lakes functionality for organizations participating in TEADAL Federations, 
while the challenges related to data sharing across organizations will be addressed by other 
work streams concerned with the federation aspects, such as trust plane, policy plane, etc.  
With time, this approach morphed into the need to view the “stretched data lakes” as something 
that can transparently control data flows and data pipelines both for cases of a single 
organization managing data across its own multiple distributed environments (the original, 
“stretched” data lakes) and also for cases where multiple organization deploy and share data 
across federation of such distributed environments. 

While the concept of Shared Federated Data Products (SFDPs) was introduced to enable 
trusted cross-organizational data sharing, it also offers an opportunity to address the 
infrastructure-related challenges that would arise from exposing Federated Data Products 
(FDPs) directly. As part of our work on the TEADAL Stretched Data Lakes and its Control 
Plane, we have leveraged this opportunity to develop a complete toolchain for the creation and 
lifecycle management of SFDPs. 

As a result, the “stretched data lakes” concept has evolved within WP4 into a more precise 
technical vision: the dynamic deployment, management, and execution of shared federated 
data pipelines across multiple organizational boundaries and across different TEADAL Nodes. 
This vision materializes primarily through separating the required functionality into four key 
subsystems of the TEADAL control plane: the monitoring subsystem for collecting, 
analysing, and externalizing the runtime performance data, the automation subsystem for 
automated creation and controllable execution of SFDPs, the optimization  subsystem for 
selecting the deployment targets for SFDPs, and the deployment subsystem for ensuring the 
SFDP is deployed on a selected target and managing its runtime execution and lifecycle.  

WP4's control-plane-oriented contributions have significantly shaped TEADAL’s capacity to 
operationalize core concepts such as FDPs (Federated Data Products) and sFDPs (Shared 
Federated Data Products), making the automated process of FDP-to-SFDP creation a 
cornerstone of the federation’s practical data-sharing capabilities. To set the context, we first 
briefly summarize TEADAL architectural concepts most relevant to WP4:  

- Federated Dataset Exposure whereby organizations expose internal datasets 
through RESTful APIs known as Federated Data Products (FDPs). These endpoints 
encapsulate access control, metadata, and discovery logic and are designed to be 
published in a shared TEADAL Catalogue.  

- Data Sharing via sFDPs, enabling one organization to re-share or transform data 
obtained from another organization's FDP. This capability supports the “negotiated 
access” model across federations and decouples data provisioning from local 
organizational control.  
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- Runtime Automation and Discoverability with GitOps, where declarative 
configurations are stored in Git repositories and used by argoCD daemons to manage 
the lifecycle of FDPs and sFDPs on TEADAL Nodes.  

- Decentralized Policy Management allowing identity and access control to remain 
under local organizational policies while FDPs and sFDPs are deployed across all the 
Nodes in TEADAL Federation. This way data sovereignty is ensured with no centralized 
data broker required at runtime, avoiding centralization wherever possible.  

 

FIGURE 1 CONTROL PLANE COMPONENTS IN SFDP PRODUCTION AND USAGE 

2.2 STRETCHED DATA LAKES ARCHITECTURE 

WP4 architecture, with its four subsystems, is aligned with the principles listed above and, 
in addition, supports reproducibility, auditing, and automation of TEADAL Infrastructure 
and data products deployed on it. The monitoring subsystem acts as runtime planning 
assistant to the optimization subsystem that selects the deployment targets, the automation 
subsystem helps users in generating compliant transformation plans, automatically 
synthesizing sFDPs, and ensuring their compliance with their specifications at runtime. 
This architecture allows the deployment subsystem to be very simple with the only 
requirement to support the deployment of the ready to go SFDPs with their deployment 
manifests to the selected TEADAL Nodes.  

Figure 1 presents the conceptual overview of the main control plane subsystems as part 
of simplified outlook on TEADAL Federation and shows, step-by-step, how these 
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subsystems contribute to the end-to-end FDP-to-SFDP production and usage processes, 
helping to serve the needs of TEADAL actors: 

1. FDP Consumer (a TEADAL actor defined to represent an organisation of the federation 
that searches for an FDP and negotiates the agreement to access it as SFDP), looks up 
the Catalogue and selects the FDP its organization needs access to. 

2. The Catalogue notifies the FDP Provider (a TEADAL actor defined to represent an 
organisation of the federation with the right to access and share data; inside its 
organization, FDP Provider communicates to additional actors, the FDP Developer, and 
the FDP Designer) and initiates a process between the FDP Consumer and the FDP 
Provider to negotiate the terms and to specify the SFDP details.  

3. As soon as the contract and the specification are ready, FDP Provider notifies Catalogue 
that the FDP-to-SFDP creation process can proceed to its next stages. 

4. Next stage of the FDP-to-SFDP creation process invokes the automation subsystem of the 
TEADAL control plane to create the SFDP as a k8s-deployable server application. 

5. When k8s-deployable server application is created, the control plane optimization 
subsystem is invoked to select the preferable deployment target for this SFDP, in this 
example, Node B. This is done ‘in consultation’ with the monitoring subsystem that collects 
runtime information about the federation’s Nodes and their workloads. 

6. After the target TEADAL Node is selected, the control plane deployment subsystem is 
requested to take care of deployment on Node B. 

7. Control plane deployment subsystem ensures Node B’s k8s control plane realizes the 
deployment of SFDP as a new service.  

8. Catalogue is notified of the new SFDP readiness and finalizes the FDP-to-SFDP creation 
process, e.g. by notifying the involved agents. 

9. As a result, users in FDP Consumer’s organizations can access the newly created SFDP 
and request the data. 

10. From now on, SFDP serves data requests to its users while making data requests to its 
source FDP and transforming the fetched data according to the SFDP specification. At 
runtime, this is enabled by the automation subsystem of the control plane as explained in 
detail in Section Error! Reference source not found.. 

Note that Figure 1 simplifies the presentation by not showing internal details of the above steps 
and by referring to only one TEADAL component other than control plane proper, the 
Catalogue. Additional TEADAL Platform subsystems and services play crucial roles in this 
process, e.g. for policy definition, k8s manifests creation, runtime policy enforcement, GitOps, 
etc. 

2.3 SUPPORTING TEADAL REQUIREMENTS 

From project wide business-level perspective, the motivations behind the SFDP concept are:  

- facilitate internal data-sharing agreements without altering source systems 

- provide governance, and traceability for reused data flows 

- act as policy-compliant "middleware" between FDP Consumers and FDP Providers 

- reduce time-to-data and development effort for data for FDP Consumers  

At the work package level, we translate these motivations into a set of system-level objectives: 

- enforce data-sharing contracts at the API level  
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- apply required data transformations and policies before exposure 

- preserve auditable boundaries between data ownership and consumption  

- decouple FDP Consumers from the technical and semantic complexity of data sources 

- represent transformed/contractual APIs as reusable, discoverable data products 

Below we demonstrate how architectural contributions presented in the previous subsection 
align with and help addressing the architectural and the operational requirements specified 
across the TEADAL project in D2.2 [2]: 

1. Enabling Dynamically Prepared Shareable Data (Req. 1.a in D2.2 [2]) 

WP4 work provides the concrete mechanisms to instantiate sFDPs as dynamic, deployable 
services. With TEADAL Platform’s approach to declarative definitions, GitOps-based 
automation, and a Kubernetes-native control plane, TEADAL pipelines can be automatically 
materialized in accordance with organization-to-organization agreements. The automation 
subsystem facilitates this dynamic instantiation of sFDPs by combining transformation logic 
with access policies and endpoint specifications. 

By treating sFDPs as deployable units tailored to specific sharing contexts, WP4 ensures that 
data sharing is both compliant with federated governance rules and adaptable to evolving 
requirements. 

2. Simplifying Data Lake Management (Req. 1.b in D2.2 [2]) 

Rather than adopting a narrow “serverless” framework, WP4 advances the spirit of serverless 
computing by embracing declarative orchestration, GitOps workflows, and automation of 
routine operations. This approach relieves users from the burden of manually provisioning, 
scaling, or debugging services, instead enabling them to express intent at a higher level (e.g., 
"this dataset should be made available via this transformation, with these access rules"), 
allowing the TEADAL control plane to effectively abstract the operational complexity of multi-
cluster infrastructure and aligning well with the goal of simplifying data lake management. 

3. Supporting Data Discovery (Req. 1.d in D2.2 [2]) 

While responsibility for implementing the Data Catalogue mostly belongs to other work 
packages, WP4 ensures compatibility and interoperability with it. The automation and the 
deployment subsystems anticipate integration with the Catalogue for dataset and pipeline 
publication and discovery, as well as for triggering the SFDP generation and deployment 
processes. While architecturally, the monitoring and the optimization subsystem are internal 
to the control plane, their integration to ‘actor-facing’ components such as Catalogue can be 
beneficial in the future, e.g. for providing federation-wide observability and allowing actors to 
affect optimization goals and parameters. In addition, ongoing exploration into aligning 
transformation components with Model Catalog Platforms (MCPs) and Model Context 
Protocol, mentioned in Introduction and further explained in next sections, has a potential to 
further reinforce WP4's alignment with TEADAL’s broader discoverability objectives. 

4. Reducing Data-Sharing Friction (Req. 2.a in D2.2 [2]) 

WP4 directly addresses friction in federated data sharing by helping to automate SFDP 
negotiation and generation, and by taking care of runtime compliance of SFDP to its negotiated 
specification. The automation subsystem is created as a framework that captures sharing 
agreements and data transformations as structured, versioned, and reproducible templates, 
dramatically lowering the coordination and integration overhead typically required when 
bridging organizational boundaries. Monitoring and optimization subsystems contribute by 
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streamlining the planning phase of data sharing, helping to generate appropriate 
configurations, exposing relevant constraints, and aligning local and federated policies. This 
design aligns well with work done in WP3 for transforming the abstract concept of “data-sharing 
friction” into a solvable engineering challenge. 

5. Managing Data and Computation Placement (Req. 2.b in D2.2 [2]) 

Through the control plane, WP4 introduces mechanisms to flexibly schedule and deploy data 
pipelines close to data sources or downstream consumers, depending on cost, policy, or 
performance considerations. This elasticity directly supports the architectural goal of stretching 
the data lake across the computing continuum, optimizing placement of data and computation. 
With declarative pipeline definitions and cluster-aware deployment assisted by the telemetry 
(e.g., cost, latency, energy) implemented by the monitoring subsystem, TEADAL control plane 
design lays the groundwork for intelligent workload scheduling across the federation. 

6. Contributing to Energy-Aware Orchestration (Req. 2.c in D2.2 [2]) 

Although energy modelling is addressed in another work package, WP4 provides the practical 
foundation needed to implement these models. The deployment subsystem, through 
declarative labels and telemetry provided by the monitoring subsystem that already collects 
some energy-related metrics, can implement the energy goals as part of selecting execution 
targets. The automation subsystem contributes by enabling the runtime selection of 
transformations the data goes through as part of the FDP-SFDP pipelines, based on how much 
energy each specific implementation of the given transformation requires. Additional well-
known energy saving strategies, such as scaling deployments to zero when idle, and 
orchestrating transformations in energy-efficient locations, can be integrated in production 
systems. Future full integration with energy-aware metrics will empower TEADAL to act on 
optimization strategies in real-time, completing the feedback loop between analysis and 
execution. 

Across all the above requirements, WP4 helps “operationalizing” TEADAL’s architectural vision 
and SFDP concept, while integrating with other work packages` outcomes, such as Catalogue, 
operational models (data friction, data gravity, performance and policy modelling), policy 
definition and enforcement tooling, trust subsystems, etc. WP4’s realization of the "stretched 
data lake" concept is created to ensure those ideas can be instantiated, managed, and evolved 
in real-world deployments and help positioning TEADAL as a pioneering effort in distributed, 
automated, and trustworthy data collaboration. 

2.4 REALIZATION AND PLATFORM INTEGRATION 

The TEADAL Platform, conceived at the architectural level in WP2 ([2][3]) and realized in WP6, 
has been evolving throughout the project. At the time of writing this deliverable, the TEADAL 
Node exists as capable and production-ready platform ready to be installed and supporting a 
range of enabling technologies and services: 

- GitLab CI/CD and Argo CD for GitOps-driven automation, 

- OPA (Open Policy Agent), Rego, and Keycloak for secure identity management, 

- Istio for fine-grained policy enforcement, 

- Prometheus, Thanos, Kepler, and Grafana for federated observability and resource 
monitoring. 

The Stretched Data Lakes components described here have been designed to be compatible 
with this curated TEADAL technology stack and to interface with the broader TEADAL platform 
architecture, leveraging and respecting project-wide decisions and technology choices, e.g.: 
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- Reliance on k8s control plane for in-cluster orchestration and placement: WP4 
assumes that, with respect to control plane, TEADAL Nodes are k8s environments. 
Thus, there is no dedicated in-cluster runtime “control plane”; instead, this is handled 
by standard k8s operators within each organizational cluster extended by additional 
CRDs. 

- Reliance on GitOps for realizing the deployments: WP4 assumes that, with respect to 
managing deployments, TEADAL Nodes are enabled with cluster-scoped GitOps 
tooling via Argo CD that can be leveraged for executing the deployments after the 
deployment target (as TEADAL Node) is selected by the optimization subsystem). 

- Reliance on TEADAL Data Catalogue to coordinate the FDP-to-SFDP creation process 
starting from the FDP Consumer requesting access to a certain FDP and complete with 
the data users from the FDP Consumer’s organizations successfully access the data. 

- Reliance on TEADAL tooling for policy definition, specification and enforcement. 

Whenever feasible, WP4 components are integrated with the foundational services of the 
TEADAL Node, as explained in the following sections. Some components were created and 
demonstrated well before the TEADAL stack existed in its final state and need to be further 
adapted before their full integration. For example, the Multi-Cloud Computer Compiler (MCC-
C) is not yet fully integrated at the time of writing this deliverable. We plan to complete the 
integration at the extent possible till the end of the project and in scope required to support 
major use cases related to multi-cluster (multi- TEADAL Node) federations. Integration status 
of WP4 components is as follows. 

- The monitoring subsystem is integrated into TEADAL Nodes (see Section 3). 

- The automation subsystem consists of several components and services, some fully 
integrated to TEADAL Nodes while some are expected to be run in development 
environments of FDP Developers/Designers (see Section 4). 

- The optimization subsystem, as explained above, is not fully integrated yet but is 
integration ready in principle as it was developed to consume labelled descriptors of 
both workloads (e.g., sFDPs) and the infrastructure nodes (e.g., cluster capabilities) 
and to output placement suggestions (see Section 5).  

- The deployment subsystem was initially planned to rely on Kubestellar to orchestrate 
deployments and state synchronization across TEADAL Nodes based on optimization 
subsystem’s output. However, this direction was abandoned mid-project as attention 
shifted toward AI-driven planning and automation and as the multi-cluster orchestration 
landscape has matured significantly, with numerous additional open-source and 
commercial solutions now available to manage cross-cluster workloads, policies, and 
data movement (see Section Error! Reference source not found.).   

Catalogue-centered Views for SFDP Creation 

To complete our explanation of the data-sharing process, this section presents the Catalogue-
centered perspective on the creation and governance of SFDPs in TEADAL. Full description 
of Catalogue architecture and its interfaces can be found in D3.3 [10]. 

The TEADAL Catalogue is a web application that employs Business Process Model and 
Notation (BPMN), a standard for defining workflows that involve human and system activities, 
to coordinate multi-step actions. BPMN workflows are visually defined and executed by a 
workflow engine, but users only interact with them indirectly, via buttons, forms, or automatic 
notifications in the Catalogue UI (see Figure 2). This ensures that even complex coordination 
across federated organizations remains user-friendly and traceable. The Catalogue defines 
and manages the following types of data-sharing assets: 
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• Dataset: A local asset that describes a data source (e.g., file, URL, database table, S3 
bucket) and its associated metadata. A Dataset is visible only within the organization 
that owns it. 

• Federated Data Product (FDP): A public-facing service description built on one or 
more Datasets. It includes technical access information and data-sharing policies. 
FDPs are visible across the federation. 

• Shared Federated Data Product (sFDP): A customized data product instance created 
to fulfil a specific access request from another organization. 

• Agreement: A recorded outcome of a negotiation process that documents the terms 
and results in the creation of an sFDP. 

 

FIGURE 2 CATALOGUE – UI VIEW 

When a user belonging to a federated organisation (FDP Consumer) discovers an interesting 
FDP via the Catalogue, they can initiate a data access negotiation process, also via the 
Catalogue. This triggers a BPMN workflow that takes care of informing the owner of the FDP 
(FDP Provider) about the access request and, optionally, supports the structured information 
exchange between the actors while negotiating, presented in Figure 3.  

 

FIGURE 3 CATALOGUE – CONTRACT REQUEST PROCESS 
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When the negotiation process is successfully finished, two things happen:  

• The owner of the FDP creates a Shared Federated Data Product (sFDP) to allow the 
requester access to the FDP data according to the policy that has been negotiated 
between the parties. The sFDP is then described in the Catalogue and linked to its FDP 

• The BPMN process that regulates the information exchange between FDP owner and 
the federated user asks the FDP owner to state the identifier of the newly created sFDP, 
sends such details to the requester, and then creates an Agreement object in the 
Catalogue. The Agreement object just records that an sFDP has been created as a 
reaction to a request by a specific user related to an FDP. 

As a result, the FDP owner maintains visibility over all derived sFDPs and the reasons they 
were created. Moreover, as the Catalogue allows binding BPMN processes to asset types, we 
can handle contract termination. When inspecting an Agreement object, both parties can 
decide to terminate the data sharing agreement via a button that triggers a custom BPMN, 
presented in Figure 4.  

 

FIGURE 4 CATALOGUE – AGREEMENT TERMINATION PROCESS 

All the events in the interactions described above are also tracked in the Advocate tool. Such 
tracking is implemented via service tasks in the BPMN processes that have been created to 
support the use cases. As a result, there’s always evidence about any actions regarding 
Datasets, Federated Data Products and Shared Federated Data Products, related both to their 
lifecycle management and their usage by other users in the federation. 

In addition to user-driven interactions through the Catalogue web UI, the TEADAL Catalogue 
also exposes a set of APIs that enable automated workflows and programmatic access to 
catalog functions. This allows internal services, CLI tools, or external platforms to interact with 
catalog assets (e.g., initiate access requests, create FDPs/sFDPs, or register agreements) 
without requiring manual UI steps. By supporting both UI and API-based interactions, the 
Catalogue accommodates a wide range of needs, from exploratory workflows to fully 
automated data sharing pipelines. The Catalogue exposes API methods supporting the 
following operations: 

• CRUD operations on assets 

• Sending notifications to users or groups of users 

• Asset status management 
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• Listing of assets types and their JSON Schema for validation purposes 

• Performing controlled SPARQL queries as explained in D3.3 

• Creating and managing User Requests, a system heavily inspired by ticketing that 
allows capturing user requests and linking them to the execution of BPMN processes 

 

FIGURE 5 PROCESS COORDINATION THOUGH CATALOGUE UI AND API 

Figure 5 presents a possible way to leverage Catalogue’s ability to coordinate complex user 
flows both through the UI and through the API. In Figure 5, the SFDP creation flow, typically 
initiated by human actors using the UI, can proceed through automation steps involving other 
TEADAL components invoked by the or on behalf of the FDP provider. For example, ASG-tool 
is invoked to create the SFDP app and initial artefacts, followed by the policy generation, the 
deployment target selection, and the deployment. To maintain end-to-end integrity of this 
operation, components and tools can use the Catalogue API programmatically, to inform about 
the stages the request is going through and to notify the Catalogue about SFDP readiness. 

From auto-generated SFDPs to running services 

Control plane automation subsystem has a tool for auto-generating the SFDP server apps and 
a library for supporting the autogenerated SFDPs at runtime (see Section 4). In between, after 
the SFDP server app is generated and before it is accessible on its preferred TEADL Node, 
several further steps are taken by a broader TEADAL platform:   

• Create YAML manifests for describing the required k8s resources 

• Create kustomize files for firing the argoCD pipelines 

• Create Rego files for encompassing the policies related to the SFDP access 

• Optionally, annotate these artifacts with the runtime annotations, when for example the 
SFDP can benefit from running on GPU nodes or requires to be run in the trusted 
environments 

• Select the deployment target for the new SFDP, among the TEADAL Nodes existing in 
the Federation (this is handled by the optimization subsystem of WP4 and is included 
here for completeness) 
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• Deploy the new SFDP on the selected deployment target and initiate its runtime 
monitoring (this is also by handled by WP4 subsystems and is included here for 
completeness) 

Following these steps, the Catalogue can be notified to complete the SFDP creation flow by 
publishing the new data product and alerting the FDP Consumer that have initiated the request 
for this new SFDP. 

Role Based Access Control (RBAC) Framework  

While the framework outlined in detail in D4.2[8] can be used to enforce any kind of access 
control, a setup was developed for TEADAL that also provides a built-in Role-Based Access 
Control (RBAC) framework. This framework dramatically reduces the effort needed to 
implement access control for RESTful services, while still leaving policy writers the freedom to 
extend the base framework with service-specific functionality. 

Data lake users are managed through a federated, OpenID Connect or OIDC-compliant 
Identity Management (IdM) service. Consumer services act on behalf of users who have 
proved their identity through IdM-configured procedures such as credential challenges, multi-
factor authentication, etc. Upon successful authentication, the IdM issues an identity token, 
more specifically a JSON Web Token (JWT), which certifies the user's identity. Consumer 
services attach the token to each data product service request by means of the Bearer HTTP 
Authorization header. Presently, TEADAL deploys Keycloak as an IdM service, although any 
other OIDC-compliant software could be used too as the RBAC framework only requires OIDC-
compliance, making no assumption about the actual IdM implementation. 

RBAC roles, users and policy rules are written in plain Rego. Thus, policy writers are 
empowered with a fully-fledged programming language which they can exploit to customize, 
abstract and reuse their roles and policies to an extent that is simply not possible with 
traditional, configuration-based, cloud Identity and Access Management solutions. Moreover, 
policy writers can implement automated Rego tests to verify their policies have the desired 
effect when evaluated or even do that interactively, for rapid prototyping, as the OPA runtime 
has both test and read-eval-print loop (REPL) facilities. Extensive, automated tests also 
prevent regression issues where modifying a rule may have an unforeseen, unwanted side-
effect, possibly leading to a security incident. Again, this level of sophistication is extremely 
expensive, in terms of the required effort, to attain with traditional Identity and Access 
Management solutions. 

The TEADAL “authnz” Rego library is a good case in point. Policy writers import this library in 
their code to automatically handle the evaluation of RBAC rules, user authentication, JWT 
validation, OIDC discovery as well as cryptographic keys download, verification and caching. 
The library allows policy writers to concentrate on defining their own, service-specific access 
control rules using an intuitive format. 

For example, consider securing a simple FDP. The REST service exposes patient records as 
Web resources. There are three paths:/patients to list and add patients, /patients/id/ to retrieve 
and delete a particular patient, and /patients/age to retrieve a list with the ID and age of each 
patient but nothing else. Also, there is a /status path which returns the current service status. 
We would like to define two roles. A product owner, which should be able to perform a GET, 
POST and DELETE on any URL path starting with /patients, and a product consumer, which 
should only be allowed to GET patient ages and service status. Moreover, we would like to 
assign both the product owner and consumer roles to the user identified by the email of 
jeejee@teadal.eu whereas just the product consumer role to the user identified by the email 
of sebs@teadal.eu. In the TEADAL RBAC framework, all the above can be accomplished with 
the Rego code presented in Figure 6. 

https://openid.net/developers/how-connect-works/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6750
https://www.keycloak.org/
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FIGURE 6 EXAMPLE REGO CODE FOR SECURING AN FDP 

To evaluate our RBAC rules against the request received from Envoy, we would simply import 
the TEADAL “authnz” library and call its allow function as exemplified by the Rego code snippet 
in Figure 7, where we tacitly assume the RBAC rules defined earlier are in a package imported 
as rbac_db. 

 

FIGURE 7 METHOD FOR EVALUATING RBAC RULES AGAINST THE REQUEST 
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As already mentioned, “authnz” automatically handles the evaluation of RBAC rules, user 
authentication, JWT validation, OIDC discovery as well as cryptographic keys download, 
verification and caching. Also of note, “authnz” provides built-in functions to evaluate user-
defined RBAC rules interactively in the Rego REPL. This is useful for dry-run scenarios where 
a policy writer may want to see what the effect of their RBAC rules is before deploying them to 
the data lake. 

In the previous example, roles are defined in Rego along with the mapping of users to roles. It 
is also possible to define roles in the IdM where users are kept and use the IdM's tools to 
associate users with roles. In this case, the Rego policy can be simplified to contain the 
role_to_perms map associating each role defined in the IdM to a list of permission objects as 
shown in Figure 8. 

 

FIGURE 8 REGO POLICY EXAMPLE FOR ASSOCIATING PERMISSIONS WITH ROLES 

This Rego code defines a policy that has the same effect as that presented earlier where users 
were explicitly associated with roles through the user_to_roles map. 
A mixed scenario is also possible, where some roles are defined in the IdM and others in Rego 
policies but regardless of the approach, if some (or all) roles are managed in the IdM, then: 

• the IdM must generate access tokens that include not only the authenticated user's ID, 
but also a list of roles the user belongs to; and 

• “authnz” must be configured to read both the user ID and the roles from the access 
token. 

In this setup, “authnz” merges any roles extracted from the token with the roles defined for that 
user in Rego. For added convenience, “authnz” treats each user as a singleton role. More 
precisely, “authnz” identifies every user “u” with a role named “u”, which contains only “u” as 
its member. For example, the user sebs@teadal.eu from the previous example implicitly has 
a corresponding role also named sebs@teadal.eu, with the user as its sole member. These 
implicit singleton roles allow policy writers to assign permissions directly to a user in the 
role_to_perms map, without needing to explicitly list the user as an additional role in the 
user_to_roles entry for that user. 
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For example, suppose the policy writer wants to extend the previous policy with a rule specific 
to the user sebs@teadal.eu. As a product consumer, sebs@teadal.eu does not have access 
to service metrics. Without implicit singleton roles, the policy writer would need to manually 
add an entry to user_to_roles to associate sebs@teadal.eu with a role of the same name, in 
order to then add a corresponding entry for role sebs@teadal.eu to the role_to_perms map, 
as shown in Figure 9. 

 

FIGURE 9 EXAMPLE OF NOT USING IMPLICIT SINGLETON ROLES 

While this works, it is cumbersome and places an additional burden on the policy writer—
especially when roles are managed externally in an IdM system. Ideally, in such cases, the 
policy writer should only need to specify the role_to_perms map, without also maintaining the 
user_to_roles map. With implicit singleton roles, there is no need to explicitly map users to 
roles of the same name. The policy writer can simply rewrite the code as shown in Figure 10: 

 

FIGURE 10 EXAMPLE OF USING IMPLICIT SINGLETON ROLES 

Policy Writing and LLM assisted Policy Generation and Bundling 

While the RBAC framework provides a way to set up policies in relation to an OIDC compliant 
IdM, OPA (and consequently the Rego language) provides a lot more flexibility in defining 
policies. Multiple Rego files, defining complex policies that make very in-depth checks against 
a variety of data, can be packaged together into a bundle. This bundle can be deployed directly 
alongside OPA, or deployed elsewhere, with OPA configured to pull the bundle dynamically. 
This would enable policies to be updated and enforced continuously. 

For this reason, we have experimented with a “Policy Editor” web app that enables authorized 
users to write and edit arbitrary policies and bundle them at once. 
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FIGURE 11 AUTHORING POLICIES IN THE “POLICY EDITOR” WEB APP 

The policies authored in the app, e.g. as shown in Figure 11, once bundled, will automatically 
be picked up by OPA and thus enforced by it. Being a web app, it can easily be accessed by 
any browser. Only authorized users (with an account created for them) can access the editor 
and make changes to the policies. Because it allows for plain (valid) Rego code, it provides full 
flexibility on how the policies are written, be it simple checks on web token contents, or more 
complex API calls that can pull additional data to be used in formulating the policies. 

Moreover, albeit in a very experimental way at this stage, the Editor also provides a way to 
generate Rego policies from natural language descriptions by leveraging AI. Figure 12 
presents the view where the user inserts the name and the description of the policy to be 
generated and Figure 13 presents the view where the app displays the generated policy that 
user can inspect, manually edit, and, eventually, use. 

 

FIGURE 12 POLICY EDITOR – POLICY GENERATION REQUEST VIEW 
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This is done by forwarding the description of the Policy to a middleware API, which in turn will 
interact with a configured LLM (either locally with Ollama available as part of TEADAL Nodes, 
or remotely towards one of the large models such as Gemini, Claude, GPT4.1, etc.). The API 
is configured to provide context for Rego code generation for OPA and, optionally, can be 
configured to interact with Model Context Protocol (MCP) servers. These can provide further 
specific context to the interactions with the LLMs, as well as tools that could enable the models 
to take some actions directly. While still a work in progress, there is the possibility to leverage 
this protocol to provide real time information on the state of a system that requires policies, 
allowing the AI to dynamically refer to it and generate meaningful relevant policies, streamlining 
the process. 

 

FIGURE 13 POLICY EDITOR – POLICY GENERATION RESULT VIEW 

Note that a more structured and mature model driven approach to policy generation is fully 
presented in D3.3[10]. The LLM-based approach presented here is ultimately an exploration 
of alternative ways to assist the users in generating meaningful policies based on existing 
contextual data. The Policy Editor Web Application is available in TEADAL GitLab. 

 

https://gitlab.teadal.ubiwhere.com/teadal-tech/opa-policy-editor-webapp
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3. THE MONITORING SUBSYSTEM (AI-DPM) 

3.1 AI-BASED PERFORMANCE MONITORING PROCESS 
 
In distributed Information Technology (IT) systems managed by platforms like Kubernetes, 
gaining visibility into resource utilization, such as CPU, memory, disk usage, energy 
consumption, and network behaviour, is essential for the proactive management of system 
functionality and performance. To contribute to addressing these needs in the TEADAL project, 
the component AI-DPM (Artificial Intelligence-Driven Performance Monitoring) has been 
produced. By applying Artificial Intelligence for IT Operations (AIOps), AI-DPM enables 
intelligent monitoring across federated environments. This component operates as part of the 
Control Plane, to generate insights on the performance of the TEADAL infrastructure and 
application environment resource utilization. 
  
The AI-DPM relies on historical time-stamped metrics metadata from the TEADAL resource 
utilization system behaviour to detect anomalies and generate predictive insights. It was 
initially designed to provide insights on resource utilization to the Control Plane optimizer, to 
let it define and establish effective strategies for optimizing data flows in TEADAL. In the latter 
phases of the project activities, it has evolved as a standalone support tool developed as REST 
API services, and available for other TEADAL components, providing a wider set of different 
monitoring insights. 
  
The progression of the AI-DPM experimental process consists of interrelated incremental 
phases. In the first iteration, the initial feasibility study and the foundational AI-DPM design, as 
described in Deliverable D4.1 [7], were presented. In the second iteration, the Proof of Concept 
(PoC) experimental results, based on classical AI models trained and tested using a publicly 
available metadata set, were shared in Deliverable D4.2 [8]. In this final iteration, AI-DPM tool 
has reached its full maturity, featuring incremental advancements: 
 

Expanded metadata capture: The scope of collected metadata has grown beyond 
traditional system resource performance metrics to include energy consumption data 
and service-mesh observability metrics within the TEADAL framework. 

Enhanced Experimentation strategy: To evaluate the performance of the models 
μBench-based experimentation environment was used to stress the system and collect 
the metadata. µBench is an open-source software that emulates real-world Kubernetes 
cluster scenarios. It is a tool designed to assess the performance of microservices 
within a Kubernetes environment. It allows users to simulate the behaviour of an 
application composed of multiple microservices, performing load tests and collecting 
metrics like CPU, memory, network, and disk space usage. 

Enhanced AI model integration: The original suite of statistical and classical AI models 
has been extended with both local and cloud-based large language models (LLMs), 
enabling improved analytical capabilities and comparative benchmarking against 
conventional classical methods. 

Interactive experimentation dashboard: In this phase, a dedicated custom dashboard 
has been added to support user experimentation with metrics selection, model training, 
testing, and evaluation, allowing users to compare performance, visualize the 
predictions, and anomaly detection results for actionable insights. 

The approach 

The AI-DPM approach relies on AIOps to collect multimodal metadata and apply different AI 
models for anomaly detection and prediction. It has been developed through incremental steps 
to refine machine learning (ML) algorithms, with recent iterations including the use of large 
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language models (LLMs). Metadata sources included public data, VM nodes, μBench-based 
benchmarks, and anticipated TEADAL pilot data during validation. The AI-DPM process 
consists of five steps: (i) metadata collection, (ii) aggregation, (iii) use in the ML cycle, (iv) 
insight generation, and (v) insight serving. The schematic representation of the end-to-end AI-
DPM approach is presented in Figure 14 below. 

 

FIGURE 14 THE FIVE-STEP AI-DPM PROCESS 

Types of Metadata Collected 

The core of the AI-DPM process is managing time-stamped metrics metadata. This runtime 
metadata is collected across multiple layers of infrastructure and application environments 
using a stack of observability tools, such as Prometheus, Kepler, and Istio. These triads of 
monitoring and observability tools specialize in different sets of metadata: 

Prometheus: Prometheus2 is an open-source monitoring and alerting toolkit designed for 
reliability and scalability in dynamic cloud environments. It collects metrics primarily of 
resource utilisation from configured targets at specified intervals and supports powerful 
queries for analysis 

 Kepler (Kubernetes-based Efficient Power Level Exporter): Kepler3 is an open-source tool 
that estimates and exports power consumption metrics in Kubernetes environments. It 
helps monitor and optimize energy usage across containers and nodes to support 
sustainable computing. 

 
2 https://prometheus.io/ 

3 https://github.com/sustainable-computing-io/kepler 

https://prometheus.io/
https://github.com/sustainable-computing-io/kepler
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Istio: Istio4 is an open-source service mesh that provides a uniform way to secure, connect, 
and monitor microservices. It manages traffic flow, enforces policies, and offers 
observability into service communications. 

The main types of metadata collected for anomaly detection and predictive insights in AI-DPM 
are system resource usage metrics, energy and sustainability metrics, and service-mesh 
observability metrics. The energy and service-mesh metrics were added to AI-DPM in a later 
phase of the incremental experimentation process to extend the monitored metric dimensions. 

Resource usage metrics 

Collected via Prometheus, the resource usage metrics capture the performance and the status 
of infrastructure components, such as nodes and containers. Key macro categories include 
compute usage, memory consumption, and disk Input / Output (I/O). These metrics enable 
workload profiling, anomaly detection, and effective scheduling based on actual resource 
consumption patterns. Specific examples of resource usage metrics, along with their 
description and the insights they offer, are provided in Table 1. The complete list of over a 
thousand Prometheus-scraped metrics is provided as a supplementary file in the GitLab 
repository.   

TABLE 1: PROMETHEUS SYSTEM RESOURCE MONITORING METRICS 

Metric Description 
 

Description 
 

node_cpu_seconds_total Total time CPU cores spend executing processes. Used to 
track CPU utilization. 

node_memory_Active_bytes Amount of actively used memory. It is useful for detecting 
memory leaks. 

node_memory_MemAvailable_bytes  Amount of memory available for starting new applications. 
Useful for memory pressure analysis. 

node_disk_read_bytes_total Total number of bytes read from disk. Helps monitor disk read 
I/O usage. 

node_disk_write_bytes_total Total number of bytes written to disk. Helps monitor disk write 
I/O usage. 

Energy and sustainability metrics 

Energy and sustainability metrics are collected to provide insights into power usage and energy 
efficiency at various levels of the system. These metrics are collected with Kepler and include 
instantaneous power consumption, accumulated energy usage, component-level 
breakdowns, and platform-level energy metrics. Collected at runtime, these metrics help 
assessing the energy consumption associated with different workloads and support 
sustainability reporting and planning. This way, AI-DPM contributes to energy efficiency goals 
of the project. Other energy-focused components of TEADAL Platform can use energy and 
sustainability metrics and insights provided by AI-DPM, for example, to implement to energy-
aware scheduling or to select data transformation implementations most suitable to current 
conditions of the infrastructure and the workloads, as described in D3.3 [10] . A few examples 
of such Kepler metrics are described along with their insights in Table 2, with additional sets 
provided in the GitLab repository. 

 
4 https://istio.io/ 

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/all_metrics_prometheus.txt?ref_type=heads
https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/all_metrics_prometheus.txt?ref_type=heads
https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/kepler_metrics.txt?ref_type=heads
https://istio.io/
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TABLE 2: KEPLER METRICS FOR ENERGY AND SUSTAINABILITY MONITORING 

Metric Description 

kepler_node_package_joules_total Total CPU energy consumed by the node (measured 
in joules). Helps to analyse energy efficiency. 

kepler_container_gpu_joules_total Measures GPU energy usage per container. Useful for 
AI/ML workloads. 

kepler_node_dram_joules_total Total RAM (DRAM) energy consumption. Helps track 
memory-intensive applications. 

kepler_container_power_watts Real-time power consumption (watts) of a running 
container. Useful for power-aware scheduling. 

kepler_cpu_usage_ratio Ratio of CPU usage to power consumed. Helps 
determine inefficient CPU workloads. 

Service-mesh observability metrics 

These metrics, shown in Table 3 are gathered from the service mesh layer and offer visibility 
into inter-service communication, latency, traffic volume, and security events. The main macro 
categories include traffic flow, latency and performance, error and reliability, and security 
telemetry. The metrics support the analysis of distributed workloads, help identify bottlenecks 
and validate the behaviour of service-level policies. The full list of these Istio metrics is provided 
along with their description in the GitLab repository. 

TABLE 3: EXAMPLES OF ISTIO SERVICE MESH OBSERVABILITY METRICS 

Metric Description 

istio_requests_total Total number of HTTP requests received by a 
service. Used to track request load. 

istio_request_duration_milliseconds Measures the time taken to process requests 
(latency) in milliseconds. Helps detect slow 
services. 

istio_tcp_sent_bytes_total Total bytes sent over TCP connections by a 
service. Used for network performance 
analysis. 

istio_requests_duration_seconds_bucket A histogram of request durations, useful for 
analysing performance trends. 

istio_policy_request_count Tracks the number of requests that pass or fail 
Istio security policies. Useful for enforcing 
security rules. 

3.2 AI MODELS 

AI-DPM integrates an AIOps approach with both classical AI models and cutting-edge time 
series Large Language Models (LLMs). Time series forecasting and anomaly detection are 
common ML tasks that have recently seen significant advancements with the integration of 
LLMs. While classical statistical and AI approaches remain essential, combining them with 
LLMs unlocks enhanced predictive capabilities, providing a benchmarking framework for 
evaluating model performance. This hybrid implementation extends the capabilities of AI-DPM, 
enabling the utilization of the most robust and effective tools for monitoring TEADAL’s data 
lake infrastructure and application environment, resulting in more accurate and resilient 
anomaly detection and forecasting solutions. 

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/istio_metrics.txt?ref_type=heads
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Initially, as detailed in the Deliverable D4.2 [8] during the PoC phase, AI-DPM relied mainly on 
standard statistical methods and classical neural networks for predictive analysis and anomaly 
detection. In subsequent phases, we expanded the model suite by incorporating LLMs to 
strengthen results and benchmark traditional techniques. The following sections outline the 
specific models integrated into the AI-DPM tool. 

Statistical and Classical AI Approach  

Under this category, statistical models such as AutoRegressive Integrated Moving Average 
(ARIMA) and Prophet, along with Recurrent Neural Network (RNN) AI models, including Gated 
Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), are considered. Each of these 
has its advantages in specific contexts of forecasting and anomaly detection. 

Statistical Models (ARIMA/Prophet) 

ARIMA is a classical statistical model used for time series forecasting, particularly when data 
exhibits patterns such as trends or autocorrelation. It integrates three key components: 
AutoRegressive (AR), which models the relationship between current and past values; 
Integrated (I), which applies differencing to render the time series stationary; and Moving 
Average (MA), which considers past forecast errors. ARIMA does not require normalization of 
data and is effective for univariate forecasting tasks. Its strength lies in its simplicity, 
interpretability, and robust performance on well-behaved time series with linear patterns. More 
importantly, in the context of TEADAL, they generally demand fewer computational resources. 

Prophet is an open-source time series forecasting tool developed by Facebook, designed for 
handling data with strong seasonal effects and historical trends. It is based on an additive 
model where components like trend, seasonality, and holidays are modelled separately and 
combined. Prophet is user-friendly, robust to missing data, and handles outliers well. It doesn’t 
require extensive data preprocessing or normalization, making it ideal for business forecasting 
tasks. Its ability to incorporate domain knowledge through custom seasonality and event 
effects makes it highly flexible and interpretable.  

RNN Models (GRU/LSTM). GRU and LSTM are advanced types of Recurrent Neural 
Networks (RNNs) widely used in time series forecasting and anomaly detection. Their 
architecture is designed to capture long-term dependencies in sequential data, making them 
ideal for modelling complex temporal patterns like system performance trends or usage 
fluctuations. In forecasting, they predict future values based on historical sequences, while in 
anomaly detection, they help identify deviations from learned patterns. Both models use gating 
mechanisms to control information flow—LSTM has separate input, output, and forget gates, 
while GRU simplifies this with update and reset gates—resulting in efficient learning. Their 
ability to handle noise, missing data, and non-linear dynamics makes them powerful tools for 
AI-driven monitoring systems like those in the TEADAL project. 

Large Language Models (LLMs) 

Large Language Models (LLMs), though originally built for text tasks, are increasingly being 
explored for time-series data analysis. By framing time-series problems as language modelling 
tasks, such as treating sequences of numerical values as tokens or generating textual 
descriptions of trends, LLMs can be adapted for forecasting, anomaly detection, and data 
summarization. We assessed various time-series-focused LLMs, e.g., TinyTimeMixer (TTM), 
LSTM-GPT, TimesFM. Our assessment focused on several parameters, including whether the 
LLMs are open or commercial. Eventually, we have integrated both the cloud-based and the 
on-premises LLMs, specifically, TimeGPT and Lag-Llama, alongside the classical AI models, 
for prediction and for anomaly detection. 
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Lag-Llama/TimeGPT 

TimeGPT, a cloud-based LLM tailored for time series tasks, introduces a new level of 
abstraction in predictive modelling for TEADAL. Unlike traditional models, it requires no local 
training or data preprocessing. Forecasts are generated through direct API calls after API key 
setup, enabling rapid deployment and scalability. TimeGPT exemplifies the integration of LLMs 
into classical AI pipelines, offering powerful predictive capabilities with minimal overhead. 

Lag-Llama is a local LLM designed for time series forecasting. It uses a transformer-based 
architecture to model sequences of lagged inputs and generate future values. Forecasting is 
treated as a sequence completion task. Lag-Llama supports multivariate time series and can 
be used for both forecasting and anomaly detection. It runs locally, without requiring API calls 
or cloud services, unlike models such as TimeGPT. 

3.3 ARCHITECTURE AND INTEGRATION OVERVIEW 

The AI-DPM system has been designed upon the monitoring ecosystem of TEADAL nodes 
deployed on Kubernetes using open-source toolsets to ensure wide-ranging observability, 
alerting, and visualisation capabilities. This ecosystem primarily consists of Prometheus, Istio, 
and Kepler. Building upon this, the AI-DPM component consists of Thanos, AI algorithms, 
APIs, and GUI for experimentation and visualization. These elements of AI-DPM are part of 
the general AI-DPM architectural layers as shown in Figure 15 viz. Data Aggregation and 
Processing Layer (Thanos), AI Analytics Layer (AI algorithms), and the Serving Layers (APIs 
and UI).  A complete description of the AI-DPM architecture can be referred from deliverable 
D2.4 [4]. 

 

FIGURE 15 AI-DPM APPLICATION ARCHITECTURE (COMPONENTS) DIAGRAM 

Starting from the observability and monitoring services of the TEADAL infrastructure and 
application environment, the metrics for AI-DPM flow through multi-layered architectural 
components: 

• Monitoring/Data Collection Layer 

The AI-DPM data collection layer uses the TEADAL monitoring tools stack, such as 

Prometheus (for infrastructure metrics), Istio (for service mesh observability), and 
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Kepler (for energy monitoring). This layer continuously provides historical time series 

metrics metadata regarding system resource usage, network traffic, and energy 

consumption. This layer is an integral element of TEADAL’s system observability and 

monitoring services. 

• Data Aggregation and Processing Layer 

  This layer functions as a time series database. After data is collected through the data 

collection layer, it is adequately aggregated and persistently stored for future 

analytical processes. Here, the data is processed with Thanos, which provides long-

term storage and scalability, ensuring that historical data is easily accessible for 

anomaly detection and predictive analysis. 

• AI Analytics Layer 

This layer serves as the AI/ML engine of AI-DPM, where processed data is analysed 
using machine learning models and algorithms following the standard ML lifecycle 
(train-test-evaluate) to detect anomalies and predict trends. It incorporates classical ML 
models, statistical methods, and large language models (LLMs). 

• AI-DPM Serving Layer 

This final layer allows sharing AI-DPM outputs to be served as REST APIs to be 
consumed. The API service features four main operations: (i) fetching historical data, 
(ii) model training on historical data, (iii) inference to generate predictions using trained 
models, and (iv) detecting anomalies. The /fetch endpoint is used to retrieve data 
necessary for processing. The API endpoint for training the selected model on historical 
data is /train, while generating predictions using the trained model is done by calling 
the /infer endpoint. The /anomaly endpoint serves for anomaly detection. 

• AI-DPM Dashboard 

The AI-DPM Dashboard is a dedicated experimentation interface designed to clearly 
show the functionalities of the AI-DPM tool that support the basic AI workflow, including 
training, testing, and evaluation of machine learning models for time-series forecasting 
and anomaly detection. It integrates the multiple model implementations of the AI-DPM 
tool with configurable parameters, allowing users to execute training workflows, assess 
model performance, and compare results across different configurations. It enables 
quick comparison of AI-DPM multi-model performances and helps users choose the 
most suitable AI model for their specific context 

3.4 EXPERIMENTS AND RESULTS 

The experimental results from the PoC, as reported in Deliverable D4.2 [8], provided a 
foundational basis for the development of AI-DPM. However, the PoC analysis relied on public 
datasets sourced from systems that slightly differ from the TEADAL environment. While the 
dataset was relatively large, it was only a five-day data of monitoring, and the microservices 
used in the Kubernetes cluster were less comparable to those in TEADAL. To address these 
gaps of PoC, we implemented an incremental strategy of gathering metadata from systems 
that closely resemble the TEADAL pilots and utilizing tools like µ-bench for consistent 
microservice simulation. We set up two VM in our lab and implemented a 2 TEADAL node 
pilot-like scenario. Additionally, the integration of more advanced techniques, such as time-
series LLMs, was used to enhance forecasting and anomaly detection. 

We present here the results of the AI-DPM tool. Monitoring metadata was collected from VM-
nodes that closely mirror the TEADAL pilot setup, and µ-bench was employed to simulate 
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realistic microservice behaviour. Furthermore, both local and cloud-based time-series LLMs 
were incorporated into the AI-DPM algorithm stack to strengthen its analytical capabilities. At 
the time of writing this deliverable, AI-DPM has been deployed in two TEADAL Pilots, the 
Mobility and the Regional Planning. Additional deployments are planned during the integration 
and validation work. 

Resource Usage Metadata Results 

Resource usage metadata from Prometheus provides critical system-level metrics, including 
CPU, memory, and disk usage. For example, the results of memory resource use 
(node_memory_MemAvailable_bytes) metrics prediction using all six models available in AI-
DPM, along with the anomalies in the pattern of available memory, are shown in the two figures 
below, Figure 16 and Figure 17. This metric indicates the amount of memory available for new 
applications without resorting to swapping. In the plot, the historical data (blue line) reveals a 
baseline of available memory hovering between 28.6 and 29.0 GB, with several significant 
spikes reaching up to 29.7 GB. The forecasting models demonstrate various prediction 
approaches for future memory consumption: 

● ARIMA (green dashed line) predicts a gradual increase, reaching the highest forecast 
around 29.4 GB. 

● Prophet (red dashed line) anticipates a moderate increase with slight fluctuations. 

● GRU and LSTM (blue and orange dashed lines) forecast more conservative growth 
with tighter oscillations. 

● LagLlama and TimeGPT (brown and purple dashed lines) predict declining memory 
usage, with TimeGPT showing the most pessimistic forecast, dropping below 28.8 GB. 

 

 

FIGURE 16 PREDICTIVE INSIGHT FOR MEMORY AVAILABILITY ON THE NODE  

In terms of actionable insights, node_memory_MemAvailable_bytes offers valuable insight 
into the actual memory available for applications without resorting to swap. When this value 
remains consistently low, it indicates memory pressure and may signal an impending out-of-
memory event, necessitating actions to offload tasks or auto scale to prevent performance 
degradation. Conversely, if memory availability is consistently high, it suggests over-
provisioning, requiring a safe reduction in allocated memory resources to save energy. 
Additionally, by analysing trends over longer periods during low-demand phases, memory can 
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be transitioned into lower power states, optimizing energy usage without impacting system 
responsiveness.  

 

FIGURE 17 ANOMALY DETECTION FOR MEMORY AVAILABILITY ON THE NODE 

The anomaly detection model implemented in AI-DPM has identified critical memory 
availability fluctuations that require attention to prevent potential system degradation. These 
anomalies represent statistically significant deviations from normal memory consumption 
patterns, likely indicating memory leaks, unexpected workloads, or system issues requiring 
investigation. The identified anomalies exclusively show memory availability increases rather 
than decreases, which counterintuitively may indicate problematic behaviour - applications 
terminating unexpectedly, service restarts, or major processes releasing memory abnormally. 
This analysis transforms what might appear as positive anomalies (more available memory) 
into actionable insights about potential application instability, allowing for proactive system 
reliability improvements. 

Energy Sustainability Metadata 

The energy metadata metrics are exposed and exported by Kepler. Kepler uses eBPF 
(extended Berkeley Packet Filter) to collect energy-related system stats and export them as 
Prometheus metrics. Several Kepler metrics provide granular power consumption data for 
Kubernetes pods, nodes, and containers. As an example, the Kepler Total power consumption 
per node (Watt) measures the total electrical power used by a compute node, recorded in 
watts. This includes power drawn by the CPU, memory, storage, and other components. 

The predictive models demonstrate divergent forecasts for future power consumption. 
Traditional statistical approaches (ARIMA and Prophet, shown in green and red dashed lines) 
predict sustained elevated power usage at approximately 0.65-0.7 watts, suggesting the recent 
high-consumption pattern may continue. Meanwhile, neural network models (GRU and LSTM, 
in blue and orange) forecast a return to more moderate levels around 0.4-0.45 watts, indicating 
the spike may be transitory as shown in Figure 18. This predictive analysis enables proactive 
power management and can inform energy optimization strategies as part of sustainability 
initiatives, allowing operations teams to schedule workloads during periods of anticipated lower 
consumption or implement dynamic throttling during projected high-usage windows. 
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FIGURE 18 PREDICTIVE INSIGHT FOR POWER CONSUMPTION PER NODE 

As shown in the time-series plot, node power consumption follows distinct daily patterns with 
baseline usage fluctuating between 0.35-0.4 watts during normal operations. The data reveals 
two significant power consumption spikes as shown in Figure 19. The two spikes were 
identified in the anomaly detection analysis as anomalous power consumption patterns that 
need further attention and monitoring.  

 

FIGURE 19 ANOMALY DETECTION FOR POWER CONSUMPTION PER NODE 

Infrastructure and Network Metadata 

The infrastructure and network metadata are metrics that help monitor service behaviour and 
are generated by Istio for all service traffic in, out, and within an Istio service mesh. These 
metrics provide useful information such as volume of traffic, error rates within traffic and the 
response times for requests. As an example, the results of different prediction models for the 
node network bandwidth metrics presented in Figure 20 and the anomaly detection results for 
the same metrics presented in Figure 21, reveal distinct usage patterns with predictable 
baseline traffic and recurring spike events. Our predictive modelling indicates that the network 
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consistently maintains a baseline bandwidth of approximately 0.185 MB/s per node with 
regular spikes reaching 0.21-0.23 MB/s. More significant anomalous spikes occasionally reach 
0.26 MB/s. This pattern suggests that scheduled processes or periodic system activities are 
driving network utilization cycles. 

 

FIGURE 20 PREDICTIVE INSIGHT FOR ISTIO TRAFFIC PER NODE 

The analysis identified four major bandwidth anomalies and one exceptional spike that 
significantly deviated from normal patterns. These represent opportunities for system 
optimization or potential issues requiring remediation. Among possible actions, to review 
application architecture to reduce inter-node dependencies and/or evaluate microservice 
deployment patterns to optimize network traffic flow. By implementing these recommendations, 
IT operations can expect more efficient resource utilization, reduced anomaly response times, 
and improved infrastructure stability, ultimately supporting better application performance and 
user experience. 

 

FIGURE 21 ANOMALY DETECTION FOR ISTIO NETWORK TRAFFIC PER NODE 
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3.5 AI-DPM OUTPUTS 

The AI-DPM outputs are served as REST APIs, and through an interactive experimentation 
and visualization GUI.  

Rest APIs 

AI-DPM is developed as a REST API service that provides time series forecasting capabilities 
using multiple models and integrates with persistently stored metrics in Thanos. The service 
supports multiple models, including a cloud API for TimeGPT LLM (requires tokens) and other 
local models, ranging from RNNs to classical statistical models and LLMs. In addition, the 
service offers a configurable training window and flexible data sourcing from Thanos via 
Prometheus Query Language (PromQL), a functional query language for selecting and 
aggregating time series data in real time.  

The API service features four main operations (service endpoints): 

1. Fetching Historical Data (/fetch): This endpoint retrieves time series data based on 
a specified Prometheus query and time range (in hours). The request requires the 
query and duration and, optionally, accepts a Thanos URL. The response includes the 
historical data, which is essential for model training and evaluation. 

2. Model Training (/train): This endpoint trains forecasting models—either local (GRU, 
LSTM, ARIMA, Prophet) or LLMs (Lag-Llama)—using specified parameters like query, 
training duration, input/output steps, and model type. Local models are saved under 
the models/ directory for reuse. The API responds with a message indicating successful 
training. 

3. Inference (/infer): This endpoint generates predictions using a previously trained 
model. It requires the same parameters as training—query, time range, input/output 
steps, and model name. All the models, including classical as well as local and cloud-
based LLMs are supported. The output is a list of future time-stamped predictions. 

4. Anomaly Detection (/anomaly): This endpoint identifies anomalies in time series data 
using the provided query and detection method. You can specify the confidence interval 
and detection duration. It returns a list of time-stamped values flagged as anomalies, 
helping detect unusual behaviour in monitored metrics. 

5. Model Evaluation (/compute_rmse): This endpoint calculates the Root Mean Square 
Error (RMSE) across multiple predictive models. It returns a number for each model, 
with lower values indicating better performance. This metric helps to identify top-
performing models, supports model comparison, enables ensemble decisions, and 
assists in model selection. 

Collectively, these endpoints enable a complete AI-DPM workflow: from data retrieval and 
model training to predictive insights and anomaly monitoring. The detailed parameter 
examples and schema of endpoints are provided in the Swagger file.  

AI-DPM Dashboard 

The AI-DPM Dashboard is a dedicated experimentation interface designed to clearly show the 
functionalities of the AI-DPM tool that support the basic AI workflow, including training, testing, 
and evaluation of machine learning models for time-series forecasting and anomaly detection. 
It integrates the multiple model implementations of the AI-DPM tool with configurable 
parameters, allowing users to execute training workflows, assess model performance, and 

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-driven-performance-monitoring/-/blob/main/Documents/swagger_api.json
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compare results across different configurations. It enables quick comparison of AI-DPM multi-
model performances and helps users choose the most suitable AI model for their specific 
context.   

Dashboard Overview 

The AI-DPM service dashboard, presented in Figure 22, is organized into two primary sections: 
the Global Configuration panel on the left for setting global parameters, and the Monitoring & 
ML Dashboard Panel on the right, for executing specific workflows such as data retrieval, 
model training, and performance evaluation. 
 

 

FIGURE 22 AI-DPM SERVICE DASHBOARD 

Global Configuration Panel 
The PromQL Query field allows to define the data source, defaulting to CPU idle metrics but 
customizable for all the timeseries metadata relevant for forecasting needs and gathered from 
Prometheus, Kepler, and Istio. Specifying the metrics to modify this query requires properly 
formatted and aggregated timeseries data suitable for the models available in the dashboard. 
  

● The Hours for fetch/train/anomaly setting controls the historical time window used 
for analysis. The default 3-hour setting is appropriate for short-term patterns, but it can 
be adjusted using the +/- buttons. Consider shorter windows (1-6 hours) for immediate 
patterns, medium windows (12-48 hours) for daily patterns, and longer windows (72+ 
hours) for weekly patterns, keeping in mind that longer windows require more 
computational resources. 
 

● Input Steps (RNN) determines how many previous points (in time) the model considers 
when making predictions. The default 48 steps can be modified as needed. This 
parameter significantly impacts model behaviour—larger values help capture long-term 
dependencies but increase computational demands, while smaller values process 
more efficiently but might miss extended patterns. 
 

● Output Steps sets the prediction horizon—how far into the future the models will 
forecast. The default 20 steps can be adjusted according to requirements. Generally, 
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prediction accuracy decreases as the horizon extends, so balancing is needed for 
longer-term forecasting against accuracy expectations. 

 
The models available section simply displays all the available models that can be selected for 
experimenting: GRU, LSTM, ARIMA, Prophet, TimeGPT, and LagLlama. 

Operations Panel 

Located on the right side of the dashboard under the “Monitoring & AI/ML Dashboard” header, 
the Operational Panel consists of four sections: 

Fetch Historical Data from Thanos: this section allows the retrieval of time-series data 
based on your configured query and time window. It includes a "Fetch Data" button that 
retrieves time series data from the Thanos backend. Before initiating any training, the 
first step is to ensure that the query is correctly set up. 

Train Local Models: this section provides options to select the Model To use from various 
forecasting models: Statistical Models (ARIMA/Prophet), RNN Models (GRU/LSTM), 
and local LLM (Lag-Llama), along with a "Train Models" button to initiate model training. 

Compute error RMSE: in this section, users can evaluate all the local models trained 
earlier in addition to the on-cloud LLM TimeGPT model performance of predictive 
models by selecting models such as GRU, LSTM, ARIMA, Prophet, TimeGPT, and 
LagLlama, and then clicking the "Compute RMSE" button to compute the Root Mean 
Square Error. This integrated setup enables users to systematically experiment with 
different models and configurations, making it a powerful tool for time series predictive 
monitoring analysis and model performance comparison 

Anomaly Detection: this section enables users to identify unusual patterns in the selected 
metrics using two statistical methods: rolling z-score and prediction interval-based 
detection. Users can select a model and a metric, then visualize anomalies as 
highlighted regions overlaid on time series plots. This helps in quickly spotting 
deviations from expected behaviour based on model forecasts and statistical 
thresholds. 

In the operational panel, in addition to fetching historical data for training, training local models, 
and evaluating their performance, prediction results, prediction, and anomaly plots are 
visualized. A tabular view of the predicted values with corresponding timestamps for each 
model is also made available through this panel.  

Overall, the AI-DMP Dashboard is part of the distribution of the AI-DPM tool. It comes together 
with the AI-DPM API. Its usage is intuitive and can enable the leverage of all the functionalities 
provided by the API. We believe that it can be useful mainly for users interested in 
experimenting with the array of AI models available in AI-DPM. Configure training parameters, 
practice all the ML cycle to choose the Models that are more suitable for their needs and 
contexts. Eventually, evaluate the performance of the models and make an informed decision 
based on the appropriate monitoring metrics.  
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4. THE AUTOMATION SUBSYSTEM (ASG) 

The automation subsystem, referred to as Automated SFDP Generation (ASG), is a key 
component of the TEADAL Stretched Data Lakes architecture and its control plane. It 
operationalizes the SFDP-based data sharing model proposed by TEADAL, transforming high-
level sharing intents into uniform, policy-compliant, and deployable data services. As part of 
the TEADAL platform, ASG realizes: 

- A developer-facing service for producing standardized SFDPs. 

- A controller for SFDP execution integrated into TEADAL GitOps, Catalogue-driven data 
product and agreements management, and policy injection and enforcement. 

Innovation highlights: 

- Declarative code generation using advanced generative AI technologies 

- Unified runtime environment abstracting away low-level data access, processing and 
caching 

- Transforms library supporting custom data transformations, including dynamic injection 
of their specific implementations 

- Support for including deployment annotations (e.g., resource needs, TEE/GPU 
targeting) 

- Support for runtime monitoring and observability via AI-backed analytics 

Comparing with the alternatives: 

- Manual SFDP creation would require lots of developer skill and effort, would be more 
time consuming and would result in inconsistent results and lack of code sharing 
between the SFDPs. 

- While in principle OpenAPI tools5 could be used to generate and to parse SDFP specs 
as well as to generate the SFDP app code, this could result in fragile and opaque code, 
possibly lacking semantic awareness of TEADAL specifics. 

This section provides the high-level design of the ASG subsystem, starting with the overview 
of its technology choices and dependencies in (ref), the componentization and the high-level 
design in (ref), and the implementation details in (ref). 

4.1 THE ASG DEPENDENCIES AND TECHNOLOGY CHOICES 

Manually authoring specifications and implementations for SFDPs would require users to 
understand REST semantics, data transformation logic, pagination schemes, input/output 
mappings, and more, making the creation process both time-consuming and error-prone, 
especially for non-expert users.  

We notice that generative AI, particularly large language models (LLMs), can substantially 
lower this barrier by translating concise user intents expressed in natural language or guided 
prompts into valid, executable specs. LLMs trained on software patterns and API schemas can 
infer structure, resolve ambiguous terms, suggest transformation pipelines, and pre-fill 

 
5 OpenAPI.Tools - an Open Source list of great tools for OpenAPI. 

https://openapi.tools/
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boilerplate based on partial context, acting as intelligent intermediaries across the data sharing 
lifecycle and helping to: 

- Discover relevant APIs and datasets by interpreting user goals, 

- Draft proxy or transform specifications from minimal input, 

- Summarize or verify compliance with data access policies, 

- Auto-generate test scenarios and documentation for shared data services. 

In federated or multi-organizational settings, such as in TEADAL, this capability can promote 
interoperability and speed, reducing manual coordination and accelerating the creation of 
reproducible, governed data pipelines. 

The GIN Library 

As was already presented in D4.2 [8], SFDP generation relies on the LLM-driven GIN library, 
developed in IBM Research and becoming widely used internally both for research and for 
contributing to the upcoming data management products. Without repeating the already 
reported GIN library details, we present the main exported constructs of GIN library relevant 
to this document, for completeness: 

- GIN Connector Specification – a set of pydantic models that cover internalization of 
every aspect of OpenAPI specification6 and a module that parses the standard 
OpenAPI specification files to fill in parts of GIN Connector Spec. 

- GIN Spec Generator – a module that generates the GIN Connector Specification for a 
given request. 

- GIN Spec Parser – a module that parses the GIN Connector Specification embedded 
into the generated SFDPs, producing the list of endpoints to fetch from the origin FDP 
and the list of transforms to apply to the fetched dataset to produce the result expected 
by the SFDP spec. 

- GIN Spec Executor – a module that takes in the parsed Connector Specification and 
executes it by 1. fetching the origin data and 2. loading and applying the required data 
transformations. 

GIN Connector Specification module is central to the GIN library and is included in all the other 
modules. For completeness, we provide a full description of the ConnectorSpec model below. 
GIN Spec Generator module is closed source and is provided to the TEADAL project team as 
a dependency, in the form of a python package. GIN Spec Parser and GIN Executor are open 
and used as a basis for the TEADAL ASG-runtime library, also described below. Since its first 
presentation in D4.2 [8], the library has been adapted, specifically for the TEADAL use case, 
as will be described in what follows. 

Gin ConnectorSpec 

The ConnectorSpec model defines how to construct a selective proxy REST API based on an 
existing OpenAPI-defined data-serving backend. It allows specific endpoints to be re-exposed 
with argument mappings, runtime data transformations, and output reshaping. The 
ConnectorSpec model is used to configure: 

- Which backend endpoints are exposed 

 
6 OpenAPI Specification v3.1.1  

https://spec.openapis.org/oas/latest.html


 D4.3: Stretched data lakes - Final Report (V 1.0) 

© 2022-2025 TEADAL Consortium Page 44 of 76 

- How parameters are passed or generated 

- How to transform responses into structured datasets 

- What transformations are applied before data is returned 

Figure 23 presents a simplified and annotated ConnectorSpec schema summary. The schema 
is very much aligned with the OpenAPI specification and affords the following key capabilities: 

- Selective Proxying: only whitelisted endpoints and only whitelisted data elements are 
exposed 

- Flexible Input Mapping: inputs can come from constants, runtime inputs, or references 
to other calls/envs 

- Data Transformation: output fields can be constructed from one or more input fields 
applying transformation functions 

- Pagination Support: common pagination strategies are supported, including cursor and 
page-based 

- Structured Output: outputs are mapped to named datasets, enabling consistent 
consumption downstream 

 

FIGURE 23 GIN CONNECTOR SCHEMA 
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The structure of ConnectorSpec somewhat follows that of the OpenAPI specification and, while 
powerful and flexible, is also inherently verbose and complex. GIN Spec Generator module 
employs LLM calls to dynamically generate these specs provided with guided prompts. For 
example, given a prompt like “Expose the /employees endpoint with a filter by role and only 
return name and email”, an LLM can scaffold the relevant ApiCall object, define the necessary 
Arguments, and propose output field transformations, all aligned with the ConnectorSpec 
schema shown in Figure 23. 

Ollama Service 

To avoid reliance on expensive or intermittently available cloud-based LLM services, we 
focused on enabling offline-compatible generation of SFDPs. For this, we first evaluated a 
number of technology candidates available for the local model and inference serving and have 
selected Ollama among all the considered options. Ollama stood out due to its ease of use, 
cross-platform support, and built-in model management. However, our decision was informed 
by a broader review of local inference options, summarized in Table 4. 

TABLE 4: COMPARISON OF THE LOCAL INFERENCE TOOLS AND FRAMEWORKS 

Framework / 
Tool (with link) 

Community & 
Ecosystem 

License Notes 

Ollama  

https://ollama.com  
Growing, GitHub activity MIT 

+ Easy to use; Docker support; fast to prototype; 
many models available 

LM Studio 

 https://lmstudio.ai  
Small, mainly desktop users Unknown - GUI-focused, not suitable for automation 

vLLM link 

  

Active research/dev 
community 

Apache 2.0 

+ Excellent performance with batching; scalable; 
smart GPU management 

- learning curve, complexity 

Text Generation 
Inference (TGI) link  

Strong support from 
Hugging Face 

Apache 2.0 Designed for production inference, full REST API 

llama.cpp link  Very active, many wrappers MIT 

+ Lightweight and efficient 

- CLI or custom server required; needs 
REST/gRPC wrapper 

GPT4All 
https://gpt4all.io  

Moderate, good docs Apache/MIT - Better for desktop/offline GUI use 

DeepSpeed-MII link Research-focused MIT 
+ Great for high-performance inference  

- Non-trivial setup 

AutoGPTQ / ExLlama 
link 

Niche but growing Apache/MIT 

+ Optimized for quantized model inference 

- Still maturing 

Each option was evaluated for its suitability in constrained, potentially air-gapped 
environments, as well as its compatibility with Kubernetes-based deployments. While more 
performant frameworks like vLLM and TGI offer production-grade scalability, they tend to have 
a steeper learning curve and more infrastructure requirements, e.g. advanced GPUs, 
etc. Ollama offers a pragmatic middle ground, with a strong local-first philosophy, simple 
deployment with Docker, and an evolving ecosystem of compatible models. In addition, Ollama 

https://ollama.com/
https://lmstudio.ai/
https://github.com/vllm-project/vllm
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/ggerganov/llama.cpp
https://gpt4all.io/
https://github.com/microsoft/DeepSpeed-MII
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwimvKSJq4eNAxURSaQEHTKtBg0QFnoECAoQAQ&url=https%3A%2F%2Fgithub.com%2FAutoGPTQ%2FAutoGPTQ&usg=AOvVaw1_IpVWzeODq_4_sGjE_wna&opi=89978449
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community has proven to be one of the first to adopt the codebase to the latest feature 
additions of the OpenAI such as functions calling7  and structured outputs8. 

Then, we have adapted the GIN library to be able to work with Ollama and have selected 
several models available in the community and capable of delivering the inference results 
required by the GIN library. Namely, GIN library, which in-house uses the advanced granite-
code-instruct models family, relies on model's ability to support tool calling and structured 
output. In TEADAL, we have adapted the compatible granite-code models family available in 
the Ollama Models Library9. 

In addition, we have integrated the ollama service as part of the TEADAL Node, as an app-
level-service that can be enabled on any TEADAL Node. If enabled, the service can be also 
used for other inference jobs, both by additional TEADAL services and, in the future, by the 
data analytics workflow put together by federation partners and users. 

Data Transformations Library 

The data transformations library is, architecturally, one of the major building blocks of the FDP-
to-SFDP pipelines. 

As part of the ASG subsystem, the transforms library is one of the links between the SFDP 
generator and the runtime execution of the generated SFDP. First, the generator ‘understands’ 
the user-provided specification of how SFDP should be derived from the FDP, ‘reads’ the 
descriptions of all the available transformations, and creates a plan of what transformations 
need to be applied and in what order. The generator then produces the spec (referred to as 
Gin Connector Specification) that is used at SFDP execution time to invoke the methods from 
the same library of transformations. So, for the generation step we basically need to only have 
the list of transforms with their descriptions, understandable by both the humans and by the 
LLMs, while at runtime we need to have the methods themselves ready to be loaded and 
executed. This link is facilitated by making the same transforms library available, both at the 
generation time and at the runtime. 

In a production system, we envision the transforms library to be a standalone component 
responsible for the full lifecycle of the transforms and their implementations. Such component, 
deployed separately, would be accessed by the ASG subsystem, both at SFDP generation 
and at the SFDP execution. In addition to storing the transforms and providing access to them 
to the ASG actors, the library component will take care of ingesting the transforms upon their 
creation and introduction to the system, validating them from a perspective of correctness, 
security, etc., collecting their runtime performance data, and decommissioning them when they 
are no longer required. Such a system could be also integrated with providers and consumers 
of transformation implementations through protocols such as MCP. Creating a full-featured 
system like this is certainly beyond project resources and schedule but its very conception is 
one of the valuable project outcomes. 

For our prototyping and experimentation, we have created the simplest possible transforms 
library as a collection of python functions that can be applied to the FDP data at runtime to 
produce the results expected by the SFDP. Some of these functions are generic data 
manipulation functions like filter, rename, slice, etc., and are built-in to the system. Some 

 
7 https://platform.openai.com/docs/guides/function-calling  

8 https://platform.openai.com/docs/guides/structured-outputs  

9 https://ollama.com/library 

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/structured-outputs
https://ollama.com/library
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functions can be added for specific FDP-SFDP pairs to implement the required domain specific 
functionality. Some other functions can be imposed by system operators to implement 
infrastructure-level functionalities such as, for example, compression and caching. Yet some 
others can even be dynamically adjusted to select the best possible implementation based on 
current system state, resources utilization etc. For example, there can be several 
implementations of the anonymization function, each requiring different types and amounts of 
runtime resources. In this and other similar cases, the SFDP generator will list the 
generic anonymization step as part of transformations pipeline and the runtime system, based 
on where the service is deployed and what resources are available, will select the suitable 
implementation and inject it to the library instead of the generic anonymization placeholder. In 
general, this will be done based not only on resource availability but also on additional 
parameters the system is constrained by, e.g. the considerations of data friction, data gravity, 
and energy consumption (as modelled and implemented in WP3). In our prototype, the library 
is delivered as a folder with python files containing all the transform functions in the library. To 
differentiate general-purpose Python functions (e.g., helpers) from transformation-specific 
functions, GIN imposes the requirement to decorate the transforms with a 
special make_tool decorator that will help picking only the transform functions, both at 
generation and at execution. In our implementation, the functions are loaded dynamically while 
serving the SFDP data endpoints which supports injecting specific realizations of certain 
functions at runtime as explained above. 

4.2 THE ASG HIGH LEVEL DESIGN 

ASG is designed to realise the uniform approach to the SFDP generation and execution 
outlined in the Introduction. Overall, the system pursues and realises the following design 
goals: 

- Minimize developer effort required to stand up the SFDPs 

- Ensure consistency across SFDPs via templated scaffolding 

- Increase system maintainability by reducing the amount of custom code in the system 

- Allow improving resource usage through sharing runtime components such as data 
caches, transforms library, etc. 

ASG achieves its goals through its three major components: 

- The ASG-tool – a service for generating the SFDPs using LLM-backed GIN library 

- The ASG-SFDP – a thin templated FastAPI server to be deployed on TEADAL 
infrastructure 

- The ASG-runtime – a library that backs-up the execution of the ASG- compliant SFDP 
servers, implementing all the heavy lifting: parsing the GIN connector Specification 
included in the SFDP; performing the http access to source FDPs; caching the data 
(with possibility of sharing among SFDPs deployed in the same environment); applying 
the transformation pipeline; error handling, etc., up to providing data to the SFDP 
endpoints at runtime. 
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FIGURE 24 ASG COMPONENTS AND DEPENDENCIES 

Figure 24 provides a visual representation of ASG system components, their external 
dependencies, and the relationships between them. In what follows we describe each of these 
components in more detail. 

ASG-tool 

ASG-tool is a developer-facing command-line tool (that can be exposed as web interface) 
capable of generating SFDPs, using the following inputs: 

- Information about the origin FDP, including its OpenApi Specification document, its 
active URLs deployed in the TEADAL Federation, as well as additional items required 
to access the FDP data, e.g. auth keys. 

- A minimal input spec defining the origin data source FDP and a set of endpoint configs 
that prescribe how endpoint's data is derived from the origin FDP data. 

- A transformations library containing reusable data manipulation functions to choose 
from for deriving the SDFP data from the origin FDP data, e.g. built-in functions for 
reshaping, filtering, or aggregating the datasets. 

ASG-tool outputs a working project (or repo) ready for validation and further processing, 
including: 

- A FastAPI implementation of the SFDP server, as app.py file that includes all the data 
endpoints described in the input specification. For each endpoint, the app includes a 
generated GIN Connector Specification to be parsed and worked through at runtime. 

- All the required boilerplate for standing up and testing the project locally, e.g. the 
requirements.txt, the README.md, etc., so the developer responsible for the SFDP 
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can validate the generated SFDP is functioning up to the contract requirements and is 
ready for onboarding and publishing. This step is necessary to ensure validity of the 
generated services while reducing the overhead that would be required for creating 
SFDPs from scratch and ensuring uniformity of the resulting data products. In the 
future, when the technology matures, it'll be possible to include an automated validation 
step, to further reduce the need for human intervention. 

- All the required boilerplate for creating a deployable image of the generated SFDP and 
pushing it to the TEADAL image registry, e.g. the Dockerfile and the CI workflow script 
to be enacted by the GitLab services as soon as the developer pushes the generated 
SFDP repo to the TEADAL's GitLab. In future production settings, the tool can be easily 
extended to support git integration, such as creating the remote repository and pushing 
the generated project artifacts thus triggering the CI workflow that will create and push 
new service's image. 

Once an SFDP is generated, additional TEADAL Platform tools and services are required to 
prepare it for deployment, e.g., to add k8s resource manifests, policy files, kustomize scripts, 
etc.  Next, the Control Plane of the TEADAL Federation is notified about the ready to be 
deployed SFDP and acts to select the deployment target and to realize the deployment. Next, 
the Catalogue is notified to finalize the SFDP creation process by informing the data user about 
new SFDP availability.   

To summarize, the ASG-tool helps creating SFDPs as fully independent, policy-compliant, and 
version-controlled data services that are deployed like any other data products in the system, 
while being uniform and predictable by sharing the common template and the common, 
possibly shared, runtime services (e.g., caches, transform library instances, etc.). 

ASG-SFDP 

Each generated SFDP app: 

- Lives in its own Git repo 

- Embeds the generated connector spec and imported transformation logic 

- Turned to a deployable image using the GitLab CI 

- Deployed as a self-contained FastAPI service with: 

o Clearly defined endpoints 

o Stable response schemas 

o Business logic applied transparently via the ASG-runtime support 

Ultimately, as part of the TEADAL platform, these apps are: 

- Discoverable through the Catalogue services like other data products (FDPs) 

- Deployable to TEADAL Nodes using existing practices the TEADAL Platform supports 
(k8s, argoCD, GitOps, etc.) 

- Auditable thanks to versioned specs and centralized runtime behaviour 

- Observable thanks to supporting service endpoints with stats and possibly telemetry 
postings (not yet implemented at the time of writing) 

Figure 25 below presents the in-app documentation page for an example ASG-SFDP, showing 
the service endpoints, common to all the SFDPs, and the data endpoints, specific for each 
individual SFDP, whereby the data can be obtained as specified by the contract and realized 
by the combination of GIN Connector specification, the transform library, the ASG-runtime 
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library and its configuration prescribing the caching policy, the http client parameters, and 
more. 

 

FIGURE 25 EXAMPLE OF SFDP /DOCS VIEW 

ASG-runtime 

ASG-runtime is a library created to serve as a runtime dependency imported by every 
generated SFDP, with the following key responsibilities: 

- Declarative Configuration, based on Pydantic Settings, including: 

o HTTP client behaviour. 

o Caching strategies for origin and transformed data. 

o Serialization formats (e.g. orjson, pickle, or noop). 

o Logging and observability options. 

- Two Level Caching, one for the origin FDP datasets and one for the transformed 
datasets. Both layers are backend-flexible (support LRU, disk, Redis), serialization 
pluggable (support pickle and orjson), optional, and allow for triggered purging. 
Caching is implemented for optimizing the network usage and saving energy related to 
data transfer and transformations (and addressing project KPIs 3.2 and 3.3). 

- Transformation engine, dynamically loading the transforms library functions and 
executing them as specified in the GIN Connector specification of each endpoint. 

- Observability support with built-in logging and statistics collection 

o HTTP statistics 

o Cache and serialization statistics 

- Pluggability and Extensibility with modular design allowing introducing: 

o Custom serializers 
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o Custom cache backends 

o Alternate rest client implementations if needed 

The library is designed to be modular, versioned, easily testable, and geared toward 
configurability, observability and fault isolation. The library is packaged as versioned releases 
to ensure the generated SFDP and the runtime are created using the same version of their 
common dependencies (the GIN library components such as GIN Connector Spec models and 
the code for generating and parsing the spec). The packaging allows two ways of usage: 

- Pulling the sources or the build release (archive) from git and importing it into the 
environment where the SFDP will run. This can be useful for local testing by 
developers. 

- Using the base image that includes the ASG-runtime for creating the SFDP image. This 
way is preferable for the automated image creation as it simplifies and speeds up image 
creation by eliminating the need to pull and build library sources every time SFDP 
image is created. 

4.3 THE ASG SOFTWARE ARCHITECTURE 

In this section we zoom into the lower level of abstraction and present how the ASG 
components are realised in software. All the code is written in python 3.12 and is available in 
TEADAL's GitLab. 

ASG-tool 

ASG-tool is implemented as a simple front end to the GIN connector generating module (GIN 
Spec Generator), adapted to the TEADAL use case. The additions are: 

- a simple, OpenAPI-spec-like specification that describes the SFDP to be generated 

- a module that parses this SFDP spec to retrieve the list of data endpoints to be exposed 
by the generated SFDPs. For each endpoint, the code invokes the GIN generator to 
create the suitable GIN Connector Specification 

- a FastAPI app template (jinja2) that is used as a basis for the resulting SFDP server 
app by creating the boilerplate (e.g., for the app initialization, hooking into the ASG-
runtime, service endpoints, etc.) of the app plus a placeholder for the required data 
endpoints, each to be filled in with the generated GIN Connector Specification 

- generic artifacts to become part of the resulting SFDP project repo, e.g. 
the README.md, the requirements.txt, the Dockerfile, etc. 

For completeness, we briefly present the SFDP Specification Format used by the ASG-tool 
that contains only one top-level entry, sfdp_endpoints, that lists all the data endpoints that will 
be available in the generated SFDP. Each item in this list represents a specific data endpoint 
along with info about how it is derived from the data obtained from the source FDP. 
The general structure of the specification file is presented in Figure 26 and explained below. 
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FIGURE 26 SFDP SPECIFICATION SCHEMA 

Each entry under sfdp_endpoints represents one data endpoint to be included in the generated 
SFDP, named as the entry itself. Each such entry is a dictionary with the following elements: 

- fdp_path: This key is required and must contain a string representing the path to the 
corresponding endpoint existing in the source FDP. The string can contain 
placeholders for dynamic segments (e.g., /stops/stop_id/{stop_id}). 

- sfdp_path: This key is required and must contain a string representing the path to the 
generated SFDP endpoint. It can mirror the placeholders in the source FDP path with 
similar placeholders (e.g., /stop_id/{stop_id}). 

- sfdp_endpoint_description: This element is optional and can contain a string with the 
description of the generated SFDP endpoint. This is not required by the ASG tool and 
is used only as part of the OpenAPI specification of the generated SFDP, to help SFDP 
users by explaining the endpoints available from the generated SFDP. 

- schema: This element is required and must contain a dictionary defining the schema 
for the data to be returned by the data endpoint. This dictionary describes the data 
properties along with their types and structures, as well as with the well-formed 
descriptions that will help GIN to derive the required data items from data exposed by 
the corresponding endpoint of the source FDP. The schema structure is a dictionary 
named as the data structure it describes, with the following keys: 

o type: (String) The type of the data described by the schema. The value is usually 
an object to indicate a structured data object. 

o properties: A dictionary that defines the properties of the data described by the 
schema with type: object. Each property must contain name, type, and 
description, formatted as specified next. Each data element returned by the 
generated SFDP endpoint is specified as an entry in the properties dictionary. 
The entries are named as the data elements they specify and contain the 
following keys: 
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▪ type: This key is required and must contain a string defining the data 
type for the property (e.g., integer, string). 

▪ example: This key is optional and can contain an example value for the 
property. This is not required by the ASG tool and is used only as part 
of the OpenAPI specification of the generated SFDP, to help SFDP 
users by illustrating a sample data value that conforms to the property's 
type. 

▪ description: This key is required and must contain a string describing 
this property. This is used by the GIN generator as a guided prompt for 
LLM to derive the way this property can be constructed from the data 
exposed by the source FDP endpoint, namely, to select the right set of 
transforms for the transforms library to be applied to the origin dataset. 

ASG-tool code and documentation complete with installation and usage instructions can be 
found in the project repository on GitLab10. 

ASG-runtime 

ASG-runtime library is architected to ensure: 

- Separation of concerns between the minimal templated FastAPI app that handles only 
the API layer and the bulk of SFDP functionality realised by the ASG-runtime 

- Reusability: By putting the main class into your library, you make it easy to reuse across 
services that differ only in source URLs or transformation logic. 

- Maintainability: Keeping cache backends and HTTP boilerplate in separate modules 
makes the system modular and easy to extend or test independently. 

- Flexibility: You can easily swap in new cache backends, plug in new data sources, or 
change transformation logic with minimal impact to the FastAPI app code. 

ASG-runtime code and documentation complete with installation and usage instructions can 
be found in the project repository on GitLab11. For ease of reference, Figure 27 shows module-
level repository structure for the ASG-runtime project. 

 

FIGURE 27 ASG-RUNTIME MODULES 

 
10 https://gitlab.teadal.ubiwhere.com/teadal-tech/asg_generation_code  

11 https://gitlab.teadal.ubiwhere.com/teadal-tech/asg-runtime  

https://gitlab.teadal.ubiwhere.com/teadal-tech/asg_generation_code
https://gitlab.teadal.ubiwhere.com/teadal-tech/asg-runtime
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In what follows we briefly describe the most important individual modules that comprise the 
ASG-runtime library to realize its functionality.  

The Settings Module 

Settings mechanism is based on Pydantic v2 settings, allowing: 

- Per-app customization to disable or enable the caches, to select the caching backend 
with its related parameters, to control logging, http behaviour, etc. 

- Loading from environment variables or .env files 

- Validation and the earliest possible error reporting 

- Derived properties compute the effective configuration, e.g., when to bypass response 
cache or use specific serializers 

- Easy integration into Kubernetes, via ConfigMaps or Secrets 

 

FIGURE 28.ENV FILE EXAMPLE FOR CONFIGURING SFDPS AT RUNTIME 

The settings are loaded only once at SFDP app startup, from inside the library, and used for 
the system initialization. In production environments where this can be a limitation, dynamic 
reloading and reconfiguration can be implemented. In TEADAL Platform, the declarative k8s 
control plane can be relied upon to reload the SFDP (basically, restart the old pods and start 
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up new ones) when configuration change is required. Figure 28 presents the .env file example 
for configuring the ASG-runtime, and thus the SFDP, at runtime. 

The Caches Module 

The caching module is architected to support flexible selection of backend cache 
implementations and injection of the serialization to be used at the boundary of the cache and 
its user. There two main concepts developed to support this flexibility, the Cache Backends 
and the Cache Roles, are described here, the serialization support will be described next as it 
is a separate module and is used not only by the caches. 

Cache Backends 

The Cache Backends concept in the ASG-runtime enables flexible, maintainable, and future-
proof caching support for Shared Federated Data Products (SFDPs). This abstraction allows: 

- Flexibility in swapping out caching implementations without changing application logic 

- Maintainability through a unified interface, decoupling core logic from backend specifics 

- Extensibility for future cache mechanisms (e.g., cloud-native caches or hybrid local-
remote setups) 

The implementation is centered around a BaseCache class, which defines a common cache 
interface and a set of abstract methods to be implemented by specific backends. As of this 
writing, ASG-runtime provides three backends: LRU, DiskCache, and Redis, selected to 
cover a range of TEADAL use cases (stateless vs. stateful, single-node vs. multi-node, etc.). 
The architecture is deliberately open to supporting new backends in future iterations. Table 5 
presents a brief comparison of several backends considered, with their pros and cons: 

TABLE 5: CACHE BACKENDS CONSIDERED FOR INCLUSION 

Option 
k8s-
ready 

Persistent 
Multi-pod 
Safe 

Notes 

Lru (in-memory) 
Yes (per 
pod) 

No  No 
Fast, simple; per-process only; high memory use; 
no external setup; does not require encoding 

diskcache  
Yes (per 
pod) 

Yes  No Local disk-based; good for large objects; uses 
SQLite under the hood  

Redis (external 
service) 

Yes  Yes  Yes  Fast and scalable; shared cache; requires external 
Redis deployment and namespacing. 

Redis (via fastapi-
cache) 

Yes  Yes  Yes  Uses Redis client within app; additional exposure 
and config needed. 

Redis (sidecar 
pattern) 

Yes  No  No  Easier setup than external; isolated per pod; 
limited utility. 

Memcached 
(external) 

Yes  No Yes  
Fast, multi-node; limited persistence by being 
memory-based and losing data on restart; external 
config required 

Sqlite (file-based) 
Yes (per 
pod) 

Yes No Lightweight; easy local persistence; not shareable 

Picle/joblib (local 
files) 

Yes Yes No 
Simple for small objects; no concurrency handling; 
dev-only use 

Clous-native, e.g., 
AWS ElastiCache, 
GCP Memorystore 

Yes Yes Yes 
Fully managed; scalable; vendor lock-in; access 
and cost considerations; integration cab be difficult 
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Cache Roles 

The dual-level approach to caching, supports two roles, the origin cache and the response 
cache. Independent of the role the cache plays, all the caches reuse the same implementation 
(backend, configuration, serialization) but differ in how they compute the keys, how they decide 
on data revocation, and what driver is used to 'own' the cache. 

Response Cache 

- Stores transformed results for rapid repeated access and is especially useful when 
original data is stable, but transformations are costly 

- Keys are computed by hashing the endpoints’ GIN Connector Specification strings 

- Cached objects are transformed and encoded response datasets 

Origin Cache 

- Stores raw data fetched from origin APIs as well as additional information optionally 
provided by the origin server, in our case, the caching http headers (other options 
considered described next) 

- Keys are computed by hashing all the available REST call parameters used to retrieve 
the data, namely, the URL with its path elements, parameters, etc. 

- Cached objects are of two types: 

o data: the dataset received from the FDP, cached under the origin cache key for 
this endpoint 

o headers: ETag/LastModified http headers, if they were provided by the origin 
FDP, cached under a special key, created by appending a header prefix to the 
origin cache key for this endpoint 

▪ ETag (Entity Tag) → A unique hash that changes if the data changes. 

▪ Last-Modified → A timestamp indicating when the resource was last 
updated. 

 
- The flow: 

o when first fetching the data, we store, along with the data, the values returned 
in the ETag or the Last-Modified headers or both 

o when this dataset is requested again, we add data freshness validation headers 
to the request we send to the origin FDP 

o If-None-Match header when the ETag response header is available in the cache 

o If-Modified-Since header when the Last-Modified response header is available 
in the cache 

o if the server responds with 304 Not Modified, we use the cached data 

o if the server responds with 200 OK, get the new data and update the cache. 

Alternatively, we could implement additional methods for validating the FDP data freshness, 
e.g., sending a lightweight "Version Check" Request to the origin FDP. This could be more 
predictable if supported by all the FDPs, e.g. by implementing data versioning and service 
endpoints to retrieve the version. In production systems we recommend implementing this 
functionality across all the FDPs in the TEADAL Federation and rely on it for cleaner origin 
caching. 
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There are additional alternatives that we have considered but did not implement. For example, 
we could rely on TTL for refreshing the data, but this would be more complex and even less 
predictable than the ETag/LastModified option, and we recommend against relying on 
TTLs/SETEX for data freshness in production environments. Table 6 summarizes the options 
with their pros and cons. 

TABLE 6: OPTIONS FOR VALIDATING FDP DATA FRESHNESS  

Option 
Requires 
FDP 
support 

Overhead 

Pull vs 
Push 
Mechanism 

Notes 

ETag/LastModified 
Headers 

Yes 

(standard) 

Very Low, just 
more headers  

Pull 
Widely supported by REST APIs; 
enables conditional GET requests 

Version Check 
Endpoint  

Yes 

(custom)  

Low, need to issue 
small request  Pull 

Requires FDPs to expose a version 
or checksum endpoint 

Fetch on Expiry  

(TTL-based) 
No   High  Pull 

Works with any source; requires 
cache to handle TTL and auto-
refresh 

Polling with Diffing No Medium–High Pull 
App periodically re-fetches and 
compares content; can be inefficient 

Pub/Sub or Webhook 
Notifications 

Yes 

(custom) 
Very Low Push 

FDP pushes invalidation/freshness 
notifications; requires infrastructure 
level trust 

Signed Timestamp or 
Expiry Field 

Yes 

(custom 
metadata) 

Low Pull 
FDP embeds expiry metadata in 
responses; simple to parse and 
check 

Both for the origin and for the response cache invalidation for removal of stale and unneeded 
data can rely on TTL and other eviction methods. We did not evaluate this aspect in the context 
of the current prototype, leaving it to be addressed in the production systems. 

The Serializers Module 

The serializers module is very simple and is described here for completeness only. Built 
similarly to the caching module, as a base calls with its different specific implementations, it 
allows injecting the most suitable encoding of the cached objects on a boundary between the 
cache and between its callers. For example, if the cache can store non-serialized objects, e.g. 
LRU cache, the system can be configured to use noop serializer for this cache to avoid 
possibly costly encoding/decoding on cache boundary. For cases, where the cache requires 
to receive bytes objects for caching, we inject an encoding serializer, depending on what type 
is preferred in the runtime settings. At the time of writing, the system supports three serializer 
implementations: a noop which avoids encoding/decoding, an orjson for fast encoding of the 
result datasets, and pickle encoding, as middle ground. As with caches, the library allows 
extensibility by adding additional custom serializers. 

The Executor Module 

The Executor is a singleton-like orchestrator, initialized once per SFDP app instance 
execution, during FastAPI lifespan startup, and acts as a lifespan-injected app context used 
by the app for serving all its endpoints. This is like having a service object in classic design 
patterns. In a web context, this gives separation of concerns and clarity, especially as the 
system grows. Note that Executor is the only ASG-runtime library object that SFDP apps must 
know about. 
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- loading, validating, and interpreting the settings 

- instantiating logging and runtime objects such as caches, serializers, origin fetcher, 
etc., according to the settings, ensuring initialization is centralized and robust 

- communications with the FastAPI app executing the SFDP - returning results and 
errors according to a well-formed minimalistic interface (see below) 

- managing the response cache and encoding of the result datasets into json format 
with orjson serializer 

- coordinating fetch-transform-respond logic per data endpoint request, delegating data 
retrieval & transformation to a GIN-dependent per-request driver objects explained next 

- manages runtime lifecycle and access to it state such as: 

o Shared caches 

o Global settings 

o Runtime stats / observability 

o Logging / tracing 

Executor-app interface is created to be as minimal as possible, with only few hooks exposed 
by the Executor to the FastAPI app (SFDP): 

1. async create method - load and initiate once; on failure, errors are logged and reported, 
SFDP initialization is prevented 

2. async get_endpoint_data method - receives GIN Connector Spec for the endpoint and 
returns the result as a dictionary of "status" and details. The "status" can be "ok" or 
"error". For "ok" status, the details contain the already encoded and ready to be sent 
result dataset; in this case the app returns http 200 with the data with no additional json 
encoding. For "error" status, the details contain the problem description; in this case 
the app returns http 500 with the problem description. In production, return codes can 
be further refined. 

3. synchronized methods to support service endpoints; currently implemented methods 
are: 

- get_settings method - returns the currently applied settings as a dictionary 

- get_stats method - returns the current values stored in the system wide counters 

- clear_origin_cache and clear_response_cache - auxiliary convenience methods that 
can be used to purge cases without restarting the app if needed. 

The Request Driver Module (GinHelper) 

While the Executor object contains all the global state of the executing SFDP, each request is 
handled by a separate instance of the per-request driver object. As it is dependent on the GIN 
library, the object is called GinHelper. 

GinHelper abstraction encapsulates gin-specific logic needed for a single request: 

- use GIN Parser to parse the GIN Connector specification into, roughly, the following: 

o a list of objects that need to be returned in the response dataset 

o a list of origin endpoints that must provide data for computing the result datasets, 
including target FDP URL, endpoint path and any query parameters 
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o a list transforms that must be applied to origin datasets for computing the response 
datasets 

- use global OriginFetcher to collect all the required origin data (the fetcher will cache 
data in a way transparent to the GinHelper) 

- use GIN Executor to load and apply transformations 

In addition, as part of GinHelper initialization for a specific request, after the GIN Connector 
spec is successfully parsed, GinHelper is also responsible to create a cache key to be used 
by the Executor for this request. This way, we decouple all the aspects of spec handling into 
the GinHelper object and relieve the Executor about knowing its details. On the other hand, all 
the caching done by the system is fully decoupled from the GinHelper and is transparent to it. 
Same is true for the http access done by the OriginFetcher on behalf of GinHelper. 

To apply the transformation of origin datasets into result datasets, GinHelper 
uses transforms submodule from GIN Executor, almost as is. This code loads all the methods 
at runtime from files in the transforms path provided as settings, applies the required 
transformations, and returns the result. In the future, we envision refactoring this code to 
become a separate module that will encapsulate the transforms functionality even further. For 
example, this module could interface with an external Transforms Library service for obtaining 
the methods as well as for providing feedback on runtime performance of individual transforms 
back to the library, e.g. using protocol such as MCP. In addition, this module could cache the 
loaded transformations for cases when dynamic reloading is not required, saving time, energy, 
and compute resources. These advanced capabilities are out of the limited scope of the 
TEADAL prototyping; thus, the system is currently limited to only the simple pandas-based 
transformations that GIN Executor supports. 

The http Module (OriginFetcher) 

The http module implements all the boilerplate related to fetching data from origin FDP 
endpoints. The main object exposed by the module is OriginFetcher, responsible for interacting 
with the rest of the system, fetching the origin data with the help of its http client helpers, 
caching the fetched results and their caching headers, and returning them to the caller as 
transformation ready json datasets, so the caller does not have to deal with http objects such 
as Response, Headers, etc. In the original GIN Library that does not support caching, all http 
access is handled with synchronous requests library. For TEADAL, this code was refactored 
to extract the domain specific behaviour into OriginFetcher object and to replace the http client 
implementation with the asynchronous, httpx-based one. As a result, ASG-library features 
reliable, asynchronous http communications with the FDP servers, supporting retries with 
exponential backoff, paging, error handling, etc. In addition, refactoring allows for changing the 
http client code separately and replacing the implementation as needed, although we did not 
pursue exposing a clear interface for this in the scope of the project. 

Serving SFDP Data Endpoints 

We summarize the Software Architecture section by providing an overview of the steps 
involved in serving data endpoints of SFDPs as components-flow diagram presented in Figure 
29 and described below. To complete the picture, Figure 30 presents a sequence diagram for 
the case the SFDP data request is served from the response cache and Figure 31 continues 
to show what happens on Response Cache Miss. 
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FIGURE 29 THE PROCESS OF SERVING THE SFDP DATA ENDPOINTS 

- User issues a request to a running SFDP's data endpoint. 

- SFDP app receives the request, obtains an Executor object from its runtime context, 
and invokes the get_endpoint_data method. This method receives a GIN Connector 
Specification string, embedded in each data endpoint (injected by the ASG-tool during 
SFDP generation). 

- Executor processes the spec: 

o Creates a new GinHelper object to manage the request. 

o GinHelper parses the spec: 

▪ On error, informs the Executor → Executor informs the app → user 
receives an HTTP 500 response. 

▪ On success, informs the Executor and awaits further commands. 

- Executor obtains caching key for the request from the GinHelper  

- Executor checks the response cache (if enabled): 
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o On response cache hit, it returns cached result to the app 

 

 

FIGURE 30 SERVING SFDP ENDPOINT DATA FROM THE RESPONSE CACHE 

- On response cache miss, proceeds to request the result from GinHelper. 

- GinHelper triggers data fetching: 

o Requests OriginFetcher to fetch origin data for each origin endpoint referenced in 
the spec. 

- OriginFetcher fetches origin data for each endpoint: 

o Checks the origin cache (if enabled): 

▪ On cache hit, returns cached origin data. 

o On cache miss: 

▪ Uses its HTTP client to fetch JSON data from origin. 

• On error: reports failure up the chain. 

• On success, returns the data and caches it (if origin cache is 
enabled). 

- GinHelper invokes GIN Executor: 

o Loads and applies all specified transforms 

o Returns the result to the Executor 
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FIGURE 31 SERVING SFDP ENDPOINT DATA FROM THE ORIGIN 

- Executor encodes the result using orjson encoder 

- Executor stores the result in the response cache (if enabled) 

- Executor returns the result or an error to the SFDP app 

- SFDP app responds to the user with either the result or an error message 

4.4 OPERATIONAL ASPECTS 

After presenting the high-level design and the software architecture of the ASG system, we 
briefly describe its operational aspects as part of TEADAL Platform. 

Packaging 

ASG components are packages as follows: 

- ASG-tool is provided as a command line utility that imports GIN modules as dependency 
and relies on Ollama service deployed on TEADAL as a driver for the generative AI 
capabilities of GIN. We plan to enhance the tool itself to be packaged as image deployable 
as TEADAL platform service as part of TEADAL Node and to expose a web interface in 
addition to CLI. Additional possible enhancement, as already mentioned above, is to 
integrate git repo creation and pushing. 

- ASG-SFDPs are ultimately packaged as images deployable as TEADAL pilot services. 

- ASG-runtime is packaged as a pip installable python package and as a base image the 
SFDP images can be built FROM. 

TEADAL Node integration 

ASG components are packages as follows: 
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- ASG-tool is currently provided as a stand-alone tool not yet integrated to the TEADAL 
Node. ASG-tool main runtime dependency, Ollama service with the preloaded model, is 
integrated so developers that have access to the TEADAL Federation Nodes, can point 
their ASG-tool to this Ollama service. 

- ASG-SFDPs are ready to be integrated into TEADAL Nodes like any other FDP 

- ASG-runtime does not need to be integrated; instead, it is used as a library by all the 
deployed SFDPs. 

SDFP Deployment and Configuration 

After SFDP code is generated by the ASG-tool and its image is created and pushed to the 
registry, its deployment requires the creation of k8s YAML files, kustomize files, rego files, etc., 
according to the contract under which the SFDP was created. Parts of this process require 
human validation and approval and are thus manual. In addition, SFDP's deployment artefacts 
can be further annotated with infrastructure- or resource-specific labels that can influence the 
selection of deployment targets for the ready-to-go SFDPs. 

To configure the SFDP, one should define values for the configuration parameters as 
ConfigMaps. Attention is required when deciding on how to configure SFDP caching and this 
deserves a separate discussion. 

Enabling Caching 

Selecting whether to cache the original data or the transformed data, or both, depends on the 
nature of the origin and the transformed datasets transformation, the network availability, the 
storage availability, the policy and additional system constraints. If the transformation is 
lightweight, e.g., simple filtering, renaming fields, the FDP data is stable (static) and network 
bandwidth is scarce, then caching the origin data and recomputing the transformation for each 
SFDP request can be the best solution. Same applies if the origin data is stable but the 
transformations are expected to be dynamic (injected for runtime loading and execution). On 
the other hand, when the transformations are stable but computationally expensive, e.g. e.g., 
encryption, heavy filtering, aggregation, or when the computed dataset is significantly smaller 
than the origin dataset and storage is scarce, it might be better to cache the response data. In 
cases where the origin FDP data is very dynamic, caching should be disabled, while in some 
other cases enabling both caches can benefit the system. In current implementation, caching 
is enabled per SFDP instance and is applied across all the endpoints. For production systems, 
the implementation can be easily adapted to make separate decisions per endpoint. 

Selecting Cache Backends 

Selecting the cache backend depends on the environment. After the backend is selected, 
additional configuration might be required: 

1. lru backend - no need for additional setup; you can only adjust the max_items setting 
to regular memory size used by the cache 

2. diskcache backend needs to write to a file so in k8s setting, there is a need to define 
persistent volumes for it and coordinate its configuration with a disk_path setting: 

3. redis backend might be the most useful but also requires the most attention and 
configuration. 

• If redis service already exists in the TEADAL Federation, it can be made available 
to the running SFDP. In this case, we might need to define a namespace to isolate 
ASG-SFDP objects from other objects managed by other components. 
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• If TEADAL Federation does not have redis service available, it can easily be 
created for ASG use and integrated in project GitOps like it's done for other platform 
or infrastructure services. In this case, we also might want to isolate spaces used 
by different SFDPs, depending on whether they belong to the same organizations 
and/or whether there are policies requiring this isolation. 

• Alternatively, redis can be deployed as a side car together with the SFDP. In this 
case, no further namespace isolation is required. 

• If redis service is going to be shared among SFDPs (the first two cases above), a 
multi-tenant redis caching strategy is required. We have already discussed the 
need for namespace isolation. In addition, a multi-tenant approach for cache 
expiration and cleanup is required, as well as maybe some additional 
synchronization (like, for example, disallowing any specific SFPD to purge caches 
if it is running in this kind of setup). These complexities will have to be handled in 
production TEADAL environments by infrastructure operators; covering all the 
possible options is out of the scope of this report. 

Runtime requirements of different caching options are summarised in the following Table 7: 

TABLE 7: CACHE BACKEND CONFIGURATION 

Option Configuration Parameter Runtime Requirements 

lru 
‘max_items’ – maximum number of numbers to 
be stored in the cache  

None; entirely in-memory and process-local 

diskcache  ‘disk’ – directory path for storing cache files 
Requires a Persistent Volume (PV) to be mounted 
and configured for data durability 

Redis as a 
Separate Service 

‘redis_url’ – URL of the external Redis service 
Requires an externally available Redis service; 
typically configured via ConfigMaps. Optional: 
namespace isolation for multi-tenant use 

Runtime stats collection 

ASG-runtime accumulates runtime stats for SFDP it backs up. For each cache, it accumulates 
hits and misses along with the serializer’s stats such as the total amount of bytes before and 
after the encoding and total time taken by encoding/decoding. For the http client, it 
accumulates the number of requests issued, the number of bytes retrieved from the origin, and 
the total time spent retrieving the FDP data. At the app level, it also accumulates the amount 
of data requests received, served, and failed, the total bytes served, and the time taken by 
serving the requests.  

Some of the counters are exposed to SFDP users through /service/stats endpoint, as shown 
in Figure 32. We do not spill out all the available counters, such as low level serializers stats, 
in order not to confuse and to overwhelm the users.  
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FIGURE 32 RUNTIME STATS EXPOSED BY ASG-RUNTIME ON BEHALF OF SFDPS 

Telemetry 

To enable observability at scale and support operational intelligence, the current runtime 
statistics infrastructure in ASG-runtime can be extended into full-fledged telemetry by 
integrating with Prometheus-based monitoring subsystem, enabling it to scrape, store, and 
visualize SFDP-related metrics. To expose the already implemented stats as metrics in a 
Prometheus-compatible format, we plan to use standard Prometheus Python client library and 
to register two types of metric values: 

- Prometheus Counters for showing accumulated stats as they are, as all our runtime 
counters (hits, misses, byte counts, durations, etc.) monotonically increase during SFDP 
execution 

- Prometheus Histograms/Summaries for tracking per-request averages for latencies and 
byte sizes over time (e.g., ‘request_duration_seconds’, ‘response_size_bytes’) 

Once Prometheus metrics are available, dashboards can be created to offer insights useful for 
Data Lakes Operators, for example: 

- Cache Effectiveness: hit/miss ratios over time per cache layer, helping to identify redundant 
fetches or poor reuse 

- Network/Storage Efficiency Gains: aggregate bytes saved due to caching, distinguishing 
between response cache and origin cache contributions  

- FDP Dependency Health: latency and error rates for each origin FDP; slowdowns or 
outages can be immediately visualized 

-  Load Characterization: requests per second, data served per SFDP, and peak usage 
windows 
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- Encoding Overhead: time and size impact of different serializers across datasets 

Metrics can be labelled as belonging either to the cache layer, to the http client, to the origin 
FDPs and to the SFDP app itself. One example of such mapping is shown in Table 8:  

TABLE 8 : EXAMPLE STATS-TO- METRICS MAPPING 

Runtime Stat Prometheus Metric Name Type Labels 

Requests received sfdp_app_requests_received_total Counter sfdp 

Response cache 
hits/misses  

cache_resp_hits_total 

cache_resp_misses_total 
Counter cache 

Origin cache 
hits/misses 

cache_orig_hits_total 

cache_orig_misses_total 
Counter cache 

Bytes Served sfdp_app_bytes_served_total Counter sfdp, endpoint 

Bytes Fetched fdp_app_bytes_fetched_total Counter fdp, endpoint 

Time fetching from 
FDP 

sfdp_rest_fetching_duration_seconds Histogram sfdp, endpoint 

Time 
encoding/decoding 

sfdp_serializer_duration_seconds Histogram format, stage 

To further assist Data Lakes Operators, the following can be implemented by the monitoring 
subsystem: 

- Alerting rules: define thresholds for unusual patterns (e.g., 100% miss ratio, slow fetch 
times) to trigger alerts. 

- Auto-tagging metrics: attach Git commit/version, SFDP name, or dataset type to metrics 
for deeper traceability. 

- Push-based metrics: support for Prometheus Push gateway for edge deployments where 
scraping is not feasible. 

Table 9 presents the two options we have identified for integrating the telemetry pipeline as 
part of ASG, with their pros and cons: 

TABLE 9 : OPTIONS FOR INTEGRATING THE TELEMETRY PIPELINE 

Option 
Implemented 
In 

Metrics 
Exposed Via 

Advantages Considerations 

FastAPI 
app 

In SFDP FastAPI 
(included in the 
ASG-tool template) 

Served via /metrics 
endpoint  

(injected in static part of 
the template) 

- Reuses existing HTTP 
stack 
- Easier integration with 
FastAPI routers 

- Couples telemetry with 
app logic 
- Requires FastAPI 
metrics middleware or 
manual exposition 

ASG-
runtime 
library  

Internal background 
HTTP server 

Served via separate port 
(e.g., 
localhost:8001/metrics) 

- Keeps observability self-
contained 
- No changes to FastAPI 
- Metrics available even 
outside FastAPI 

- Adds a second HTTP 
listener 
- Needs coordination with 
Prometheus scraping 
configuration 

Sidecar 
Exporter 

Separate container 
or thread 

Metrics extracted from 
logs or API 

- Externalizes all telemetry 
logic 
- Reuses existing 
exporters (e.g., log-based, 
HTTP proxy) 

- Adds operational 
complexity 
- May lag behind real-time 
metrics or need custom 
integration 
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With such telemetry pipeline, ASG-runtime can not only improve observability and debugging 
but also provide evidence of performance and efficiency improvements gained through its 
caching strategies, to help validating the project KPIs 3.2 and 3.2.  

Given the TEADAL architecture's emphasis on modularity and clear separation of concerns, 
integrating Prometheus metrics collection directly in the ASG-runtime library offers a clean and 
reusable solution. It enables observability without modifying the lightweight SFDP FastAPI 
apps, keeping them focused solely on serving data. This approach aligns well with the goal of 
encapsulating SFDP runtime behaviour within the ASG layer. However, it introduces minor 
operational complexity (e.g., an additional internal port), so collaboration with the TEADAL 
monitoring subsystem team is recommended to ensure consistent Prometheus scraping setup 
across the Nodes. Alternatively, teams requiring tighter integration with the app logic or 
leveraging FastAPI-native monitoring may prefer the FastAPI-level implementation. 

Deployment View 

To summarize the operational aspects section, Figure 33 shows an example deployment 
diagram for the ASG components.  

 

FIGURE 33 AUTOMATION SUBSYSTEM DEPLOYMENT VIEW 
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5. THE OPTIMIZATION AND THE DEPLOYMENT SUBSYSTEMS 

During the initial stages of the project (see D4.1 [7]), we envisioned data pipelines as explicit 
sequences of transformation operations, applied to data in transit from a source Federated 
Data Product (FDP) to a destination Shared Federated Data Product (sFDP). These pipelines 
were expected to fulfil the contractual transformation requirements of data sharing agreements 
while optimizing operational goals such as performance, energy efficiency, and locality, 
addressing challenges such as data gravity and friction. Advanced concepts such as pipeline 
composition (building complex pipelines from modular sub-pipelines), and pipeline partitioning 
(for enabling distributed deployment of sub-pipelines) were also introduced. However, most 
design attention was centered on optimizing, with Stretched Data Lake Compiler (SDLC) 
based on MCC-C, and orchestrating their deployment, via the Stretched Data Lake Executor 
(SDLE) based on Kubestellar, rather than on supporting their efficient and scalable 
construction. 

As the project progressed, several critical limitations of this approach became apparent. First, 
manually constructing pipelines proved to be both time-consuming and skill-intensive, creating 
delays incompatible with TEADAL’s vision of dynamic, user-driven federation workflows. 
Second, for non-trivial pipelines, the envisioned optimization, solving for placement of all 
pipeline components under multiple constraints, was not only computationally expensive but 
also increasingly energy-inefficient, undermining the optimization’s own goals. 

Understanding these limitations led to a fundamental shift in TEADAL’s approach, resulting in 
the adoption of the ASG-based model described in this report. In this new approach, each 
FDP-to-SFDP data transformation, documented as an agreement between the FDP Consumer 
and the FDP Provider, is automatically created as a separately deployable data server 
component. At runtime, each such component retrieves the data from source and applies the 
transformations required by the agreement before serving the resulting data to its requestor, 
without requiring global pipeline planning or optimization. 

As detailed in Section 4, these transformation components can be lightweight, dynamically 
loaded Python functions executed in-process (e.g., via REPL), or can invoke external 
transformation services via API calls (e.g., REST). This flexibility allows transformation logic to 
be substituted or adapted at runtime, by policy managers or infrastructure controllers, based 
on performance or locality needs. Moreover, the transformation functions can originate from 
pre-approved TEADAL libraries, user-provided scripts, or third-party components (e.g., 
discoverable via MCP interfaces). 

This ASG-based approach affords three critical benefits. First, it drastically simplifies and 
automates pipeline construction by shifting the focus from manual specification of all the 
transformation steps towards the LLM-assisted generation of SFDPs based on negotiated 
agreements, including creation of transformation chains for each of its data endpoints. This 
makes SFDP creation feasible even for non-expert users and, in addition, simplifies their 
operation as a single deployable unit instead of a fragile sequence of processes/jobs. Second, 
it enables cross-pipeline optimization by recognizing shared or co-located transformation 
components and reusing or scaling them intelligently. Third, and most importantly, it defers 
certain optimization decisions to runtime. For instance, an sFDP can be deployed near the 
data source and the data requesters, optimizing latency and system load at that moment. If 
system conditions later change, instead of recomputing a full pipeline deployment, the runtime 
can adjust only the necessary transformation implementations or their placements, without 
breaking the data contract or disrupting service continuity. This makes the system significantly 
more adaptable and robust than the original, monolithic pipeline optimization model. 
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As an additional bonus, transitioning to the ASG-based approach to data pipelines allowed us 
to re-scope both the optimization and the deployment subsystems of the TEADAL Control 
Plane. For example, for the newly created pipelines, the previous approach required global 
pipeline optimization followed by the distributed orchestration of deploying potentially many 
components on potentially several nodes. The new approach only requires a rather simple 
selection of the SFDP deployment target among the Federation’s TEADAL Nodes, followed by 
dispatching the SFDP for deployment on a selected Node. Like previously, the placement 
decision should still be informed by system wide metadata such as policies, resource 
allocations, and monitored runtime data. In addition, like previously, runtime controller-
watchers need to be installed to make the required runtime adjustments when needed. Still, 
the overall complexity of both the optimization and the deployment subsystems is greatly 
reduced as presented in the next two subsections that follow. 

5.1 THE OPTIMIZATION SUBSYSTEM 

In the ASG-based architecture, the role of the optimizer is substantially simplified compared to 
the original design, but it is no less essential. Its core responsibility is twofold: (1) initial 
placement decision-making for newly generated sFDP servers, and (2) continuous runtime 
observation and adjustment of deployed components to maintain operational efficiency and 
contract compliance under changing system conditions. 

Initial Placement Decision 

While the shift to ASG-based sFDP generation eliminates the need for a full-blown, centralized, 
multi-objective optimization of multi-component pipelines, it does not eliminate the need for 
placement optimization. Instead, it reframes the requirements towards a more localized, 
lightweight form of optimization focused on selecting the deployment target for the 
automatically generated sFDP server app. 

With the ASG-based approach, when a new sFDP is automatically generated, typically in 
response to a data access agreement, it has to be deployed on one of the available TEADAL 
Nodes (i.e., Kubernetes clusters across the federation). So, the optimizer is basically 
responsible for selecting the most appropriate TEADAL Node (i.e., Kubernetes cluster) for 
hosting this new sFDP. This placement must account for multiple factors: 

• Proximity to data sources and expected consumers (to minimize latency and cross-
site data transfer costs), 

• Resource availability on candidate Nodes (e.g., CPU, memory, GPU if needed), 

• Transform service locality, i.e., whether relevant transformation services or reusable 
components are already running nearby, 

• Policy constraints, such as jurisdictional data handling rules or energy-efficiency 
goals. 

The decision is made once per sFDP generation and should be lightweight, fast, and 
explainable. It can leverage monitored metrics (e.g., current load, network Round Trip Times 
or RTTs, recent query patterns), as well as declarative resource requests encoded in the 
SFDP’s deployment spec (e.g., via custom Kubernetes labels or annotations). After the 
TEADAL Node is selected, in-cluster placement is delegated to the local Kubernetes control 
plane, which handles finer-grained scheduling (e.g., pod-to-node assignment) using standard 
Kubernetes mechanisms, possibly enhanced with additional labels for declaring resource 
requirements. 
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This lightweight placement optimization can leverage parts of the previously developed 
Stretched Data Lake Compiler (SDLC) particularly those components designed to ingest 
runtime metrics collected by the monitoring subsystem and declarative resource requirements 
(e.g., labels indicating memory needs, latency sensitivity, or preferred data regions). Runtime 
monitoring data can also inform decisions by helping estimate expected load, transformation 
reuse opportunities, or proximity to frequently queried data sources. 

In summary, the optimization subsystem remains a key component of TEADAL’s control 
architecture, but its scope is now streamlined. Rather than attempting to optimize entire 
transformation graphs globally, its role is to make fast, context-aware deployment decisions 
for individual sFDP servers, aligning them with dynamic system state and operational goals. 

Runtime Adjustment via Optimization Controllers 

After deployment, sFDPs may continue to run under evolving conditions: changes in load, new 
transformation capabilities becoming available, or shifts in data source access patterns. To 
handle this, dedicated optimization controllers monitor runtime state and can trigger 
adjustments when necessary. These adjustments may include: 

• Injecting or substituting transformation implementations dynamically, e.g., 
switching from an in-process Python function to an external high-throughput service 
when load increases, 

• Rebinding transformation endpoints to closer or more efficient service instances 
(e.g., when a cached transformation becomes hot and is replicated), 

• Triggering re-deployment of an sFDP to a more suitable Node, in extreme cases 
where relocation offers significant benefit and is feasible under contract and SLA terms. 

These controllers operate as Kubernetes operators: watching resource state and responding 
to declarative goals or policy conditions. They are aware of the ASG semantics and can reason 
about the relationship between data contracts, transformation chains, and deployment 
structure. 

In effect, this runtime optimization capability allows TEADAL to defer certain placement or 
adaptation decisions until better runtime knowledge is available, trading pre-deployment 
complexity for runtime agility. The system becomes more resilient, elastic, and self-optimizing 
without requiring full pipeline redeployment, a key limitation of the original approach. 

Architecture Updates 

This lightweight placement optimization can leverage parts of the previously developed 
Stretched Data Lake Compiler (SDLC) particularly those components designed to ingest 
runtime metrics collected by the monitoring subsystem and declarative resource requirements 
(e.g., labels indicating memory needs, latency sensitivity, or preferred data regions). Runtime 
monitoring data can also inform decisions by helping estimate expected load, transformation 
reuse opportunities, or proximity to frequently queried data sources. 

Eliminate Kubeflow Dependency 

In the initial approach to data pipelines, they were conceived as Direct Acyclic Graphs (DAGs) 
of transformation steps, requiring end-to-end pipeline composition, partitioning across clusters, 
complex optimization across many stages, and often also model-based tuning (e.g., ML for 
placement, performance prediction). In that context, Kubeflow made sense with, for example 
Kubeflow Pipelines selected to model and orchestrate complex pipelines and Katib to 
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automate hyperparameter-style search for optimal pipeline configurations or placement 
heuristics. Although Kubeflow is a functionally beneficial multi-step pipeline engine, its reliance 
on ML-heavy tooling turns it to a heavyweight overhead, adding complexity and degrading 
efficiency. 

In the ASG-based model, we generate one deployable sFDP per agreement, not long 
convoluted pipelines. The transformation chains are still present but now as declarative 
specifications contained as part of every data endpoint of the new SFDP (GIN Connector 
Spec). As a result, placement decisions are made per individual self-contained data servers, 
not for complex DAGs. This allows the optimization to be far more lightweight than a full 
combinatorial problem before. Runtime optimization can be reactive and local, handled by 
custom controllers and not by the retrained ML models. 

In short, adoption of the ASG-based approach to data pipelines, allows us to eliminate the 
dependency on Kubeflow and to overall achieve simple architecture, faster optimization 
integrations, potentially better explainability of the optimization decisions (this can be crucial 
for compliance in some industries), and lower resource consumption achieving the energy-
efficiency goals better than before (see full description of the approach in D3.3 [10]). 

Adapting the Stretched Data Lakes Compiler (SDLC) 

TEADAL’s already demonstrated SDLC12 component, designed to analyse, optimize, and 
enrich data pipelines was designed to ingest Kubeflow pipelines and apply optimization to 
produce placement recipes, while addressing key optimization objectives, with a primary focus 
on resource optimization, and other crucial constraints.  

To adapt it to the new ASG-based approach, it must be refactored to receive simpler inputs 
while still leveraging the various data and resource inventory services, including the Catalogue, 
as well as the Federation’s resource inventory. Here is the list of metadata SDLC uses in order 
to compute the result: 

• Metadata about source datasets. From the Catalogue, SDLC receives information and 
metadata about the source FDPs that the SFDP needs to get data from, e.g. FDP 
service location, dataset size, cardinality, and more. 

• Metadata about the Federation. To perform the optimization, SDLC needs access to a 
detailed inventory of available locations (i.e., TEADAL Nodes or clusters) for pipeline 
execution. This inventory is planned as mostly static YAML manifests fully describing 
TEADAL Federation, its members, resources, users, policies, etc.  

• Metadata about transformations, e.g., the input-output ratio of tasks, what columns 
being read and/or written, the nature of updates to the columns being written (e.g., 
append-only, overwrite). At first, the pipeline-based design was expecting users to 
annotate the transformations with this type of metadata. It was quickly understood, 
however, that having to specify some of the task characteristics could be too much of 
a burden to FDP developers/designers and also can result in inaccurate 
estimates/measurements. As a result of this understanding, and exploratory activity 
towards trying to predict these characteristics, possibly using LLMs, inspired by work 
done by the database optimization community. With an ASG-based approach, this data 
can be included as part of the transformations library, including by dynamically adding 
the collected performance characteristics. 

• Metadata about the operational environment, e.g. the bandwidth between locations, 
the availability of hardware resources, and the geographic location of compute clusters.  

 
12 TEADAL Tech / stretched-data-lake-compiler · GitLab 

https://gitlab.teadal.ubiwhere.com/teadal-tech/stretched-data-lake-compiler
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In addition to receiving the target data pipeline as an annotated Kubeflow manifest and the 
required metadata, the optimizer needs to know its optimization objectives (e.g., minimizing 
the data transfer, the energy consumption, the cost, the execution time, etc.) 

Internally, SDLC computes internal representation of its inputs and executes the solver to 
resolve the constraints. The result of the SDLC execution is a Kubeflow pipeline enriched with 
optimization decisions indicating the most suitable clusters for their execution. This also needs 
to be adapted to just produce the prioritized list of deployment targets for the input SFDP. 

To summarize, Table 10 presents the adaptations required to make the SDLC working as part 
of the ASG-based approach. Alternative options could be and will be considered if 
time/resources will permit. 

TABLE 10 : ADAPTING SDLC TO WORK WITH ASG 

Aspect 
Current SDLC 
Design 

Plan towards 
ASG-SDLC 
integration 

Notes 

Input: data pipeline for 
placement 

Kubeflow Pipeline 
Manifests generated as 
part of FDP-SFDP 
agreement 

Easy to adapt.  

ASG-SFDP can be presented as a 
single step pipeline. 

Metadata annotations can be 
missing. 

Input: Location 
constraints for tasks  

Manual addition 
Might be not needed. 

 

Can be designed into the 
Transforms Library 

Input: Metadata about 
datasets 

 

Manual at first, the 
obtained through 
Catalogue APIs 

Catalogue APIs 

Can be obtained through the 
monitoring subsystem from the 
already deployed data products 
that support telemetry 

Input: Federation’s 
Resource Inventory 

Kubestellar Resource 
Inventory  

Inventory defined and 
maintained by Data Lake 
Operators as YAML 
manifests 

Even in Kubestellar Resource 
Inventory would need to be based 
on source of truth provided by the 
operators 

5.2 THE DEPLOYMENT SUBSYSTEM 

In the ASG-based model, the Deployment Subsystem is responsible for realizing the 
optimizer's placement decisions and ensuring that sFDP components are correctly and 
consistently deployed across the Federation’s TEADAL Nodes. While the first project iteration 
focused on sophisticated orchestration logic for deploying graph-shaped pipelines with 
complex interdependencies, the shift to single-component sFDP servers has significantly 
reduced the deployment complexity. However, the challenge of multi-cluster, policy-aware, and 
GitOps-compatible deployment orchestration remains central to TEADAL’s operational model. 

Evolving Landscape of Multi-Cluster Orchestration 

Since TEADAL's inception, the Kubernetes ecosystem has seen significant advancements in 
multi-cluster management. Organizations now routinely operate numerous clusters across 
diverse environments, including cloud, on-premises, and edge locations. This proliferation has 
led to the emergence of several tools and managed platforms designed to simplify multi-cluster 
operations, some by well-established and trusted vendors and cloud providers: 
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• Rancher13: Provides centralized management for multiple Kubernetes clusters, offering 
features like unified authentication, access control, and monitoring. 

• Google Anthos14: Enables consistent application deployment and operations across 
hybrid and multi-cloud environments, integrating with existing Kubernetes clusters. 

• Azure Arc15: Extends Azure management capabilities to Kubernetes clusters running 
outside of Azure, facilitating unified governance and policy enforcement. 

• Spectro Cloud Palette16: Offers a platform for managing Kubernetes clusters across 
various infrastructures, emphasizing flexibility and customization. 

These and other solutions underscore the industry's shift towards more sophisticated and 
scalable multi-cluster management approaches. Most solutions available as a service are 
feature rich and affordable making investment in creating a do-it-yourself solution less 
attractive than few years ago when the solution space was fresh and open to innovations and 
there many competing open-source projects exploring the space (see the survey included in 
the previous deliverable of this work package [8]). 

While initially it was planned to use Kubestellar, due to change of direction taken by the project. 
Looking for a replacement project to integrate, we created the survey reported in D4.2 [8] and 
discovered that most projects are fading away, either turning into vendor-backed managed 
solutions or just disappearing. As our WP4 focus has pivoted towards AI-driven automation 
and declarative methodologies, the initial plan to utilize open-source tools like Kubestellar for 
cross-cluster orchestration was set aside, in alignment with project priorities and with the 
broader industry trend of leveraging existing, mature tools rather than developing bespoke 
solutions from scratch. 

As a result, we envision that in production TEADAL Platform will be realized using production 
solutions of choice selected by the Data Lake Operators. For prototyping and demonstration 
purposes, we have decided to scaffold simple yet functionally sufficient do-it-yourself multi-
cluster deployment subsystem relying on a lightweight control loop built around two custom 
TEADAL CRDs: 

• TeadalFederation, which represents federation-wide configuration, including the list of 
participating TEADAL Nodes (clusters), their access configurations (e.g., kubeconfig 
secrets), and shared policy metadata. 

• TeadalDataProduct, which represents a deployment intent for a single sFDP, including 
its container image, resource requirements, labels, and transformation metadata. 

A TEADAL Controller component, written in Python and deployed either centrally on a 
dedicated Node or replicated across the Federation’s Nodes, is initiated with the (mostly static) 
TeadalFederation resource that contains information about the Federation buildup. In addition, 
the controller watches for new TeadalDataProduct resources. Upon detecting one, it performs 
the following sequence: 

1. Node Selection: Using the metadata in the TeadalFederation and the placement 
decision produced by the Optimization Subsystem, it selects the target Node (cluster) 

 
13 Enterprise Kubernetes Management Platform & Software | Rancher 

14 Anthos Powers Enterprise Container Platforms | Google Cloud 

15 Azure Arc – Hybrid and Multi-Cloud Management and Solution 

16 What is Palette? | Palette 

https://www.rancher.com/
https://cloud.google.com/anthos
https://azure.microsoft.com/en-us/products/azure-arc
https://docs.spectrocloud.com/
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for deployment. Note that in the pipeline-based design, final selection of the target Node 
for the pipeline deployment out of the prioritized list of nodes computed by the SDLC, 
is also under the responsibility of the Stretched Pipeline Executor. 

2. GitOps Dispatching: It pushes the corresponding sFDP deployment YAML (or 
Kustomize patch) to the Git repository associated with the selected Node. This 
repository is continuously watched by a GitOps agent (e.g., Argo CD) running on that 
Node. 

3. Deployment Execution: The GitOps agent applies the new resource manifests to the 
local cluster, ensuring that the sFDP server is started, monitored, and automatically re-
synced if drift occurs. 

4. Status Tracking and Reconciliation: The TEADAL Controller periodically queries the 
Kubernetes API of each Node to monitor deployment status and health. If failures or 
delays are detected, it can trigger re-dispatch, fallback logic, or even re-optimization if 
allowed by the sFDP’s contract. 

This architecture ensures a clean separation of concerns: 

• Optimization logic is kept lightweight and dynamic. 

• Deployment logic is delegated to GitOps mechanisms per cluster, ensuring local 
consistency and minimal central coordination. 

• Monitoring and adaptation happen through federated observation of runtime metrics, 
fed back into both optimization and deployment decisions. 

Importantly, this structure also supports TEADAL’s vision of zero trust. Since each TEADAL 
Node has autonomy over its local GitOps, deployment compliance with organizational 
constraints is preserved, avoiding the need for a centralized orchestrator with direct write 
access to remote clusters. Finally, this TEADAL deployment flow integrates tightly with the 
ASG toolchain. As soon as a new sFDP is generated, its deployment spec is automatically 
registered as an SFDP CRD, closing the loop from agreement creation to operational 
deployment. This supports dynamic, on-demand federation scenarios where data sharing 
workflows can be rapidly created, deployed, monitored, and adapted, entirely through 
declarative resources and lightweight control logic. 

Note also that in the pipeline-based approach, the deployment component (the Stretched 
Pipeline Executor) was also assumed responsible for orchestrating the communications 
between the different sub-pipelines, especially when they are set to run in separate clusters, 
sending output of one sub-pipeline to another pipeline as input. With an ASG-based approach, 
we do not envision the need for dedicated connectivity management beyond what is already 
provided by the TEADAL Platform that ensures policy-driven connectivity in a way implicit to 
the data users. 
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6. SUMMARY  

Final architecture and realization of the TEADAL control plane described in this report puts 
forward several major innovations. 

First, the automation subsystem enables SFDPs to be implemented as lightweight, self-
contained API-driven data services that act as controlled intermediaries between FDPs and 
their consumers. These SFDPs are generated using a templated application framework and 
at runtime are backed by a shared library. This approach facilitates rapid development, 
consistent deployment, and unified runtime management of SFDPs across the TEADAL 
Federation, in alignment with the rest of the TEADAL Platform, including TEADAL Nodes 
integration, policy management, Catalogue flows, etc.  

Next, to further enhance the operational capabilities of SFDPs and the TEADAL infrastructure 
at large, the platform integrates intelligent monitoring and optimization strategies. These are 
driven by rich runtime metadata and AI-based analysis pipelines. The AI-Driven Performance 
Monitoring (AI-DPM) framework presented in (section ref) complements the Stretched Data 
Lakes by enabling proactive resource management, anomaly detection, and performance 
prediction across the TEADAL Nodes, all critical to achieving the platform’s trust, sustainability, 
and efficiency goals.  

Another important innovation is related to exploring applicability of LLMs across the board of 
the WP4 tasks. As a result of this exploration, we present the ASG-tool, the RBAC policy 
generation app, and the LLM based data analytics. 

Additional innovation is related to the Transformations Library Concept that will certainly be 
further explored towards better automation, e.g. annotating the tools with their functional and 
performance characteristics, and towards potential alignment and integration with emerging 
industry trends such as MCP. Future work includes exploring MCP-compatible exposure of 
TEADAL’s transformation assets, enabling LLM-based orchestration and discoverability of 
reusable components across the federation, potentially turning TEADAL into a reference model 
or early prototype of MCP-aligned architectures. 

Assets created by the WP4 team are designed in alignment with the overall TEADAL 
Architecture and Platform design. Some components are already integrated into the platform 
and available for pilots while some are in the process of integration and validation. 
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