

WWW.TEADAL.EU

Grant Agreement No.: 101070186 Topic: HORIZON-CL4-2021-DATA-01-01
Call: HORIZON-CL4-2021-DATA-01 Type of action: HORIZON-RIA

D4.2 STRETCHED DATA LAKES

SECOND RELEASE REPORT

Revision: v.1.0

Work package WP 4

Task Task 4.1, 4.2, 4.3

Due date 31/10/2024 (extended)

Submission date 31/10/2024

Deliverable lead IBM

Version 1.0

Authors Ronen Kat (IBM), Ofer Biran (IBM), Katherine Barabash (IBM), Mohamed Mahameed
(IBM), Temesgen Magule Olango (ALMAVIVA), Hine Samantha (ALMAVIVA), Sergio
Sestili (ALMAVIVA), Andrea Falconi (Martel), Sebastian Werner (TUB), Sepideh
Masoudi (TUB), Fernando Castillo (TUB), Eduardo Brito (CYB), Gabriele Cerfoglio
(Martel), Rizkallah Touma (i2CAT), Bruno Feitas (UBIWHERE)

Reviewers Bruno Feitas (UBIWHERE)

Eduardo Brito (CYB)

Abstract Technical summary of the demonstration of the control plane, data management, and
trustworthy data flows working together in selected scenario, addressing 50% of the
relevant KPIs

Keywords Control plane, Data lake, multi-cloud, multi-cluster, data pipelines

http://www.teadal.eu/

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 2 of 55

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 26/06/2024 Outline Ronen Kat (IBM)

V0.2 19/08/2024 Integrated the first partner contributions round Ofer Biran (IBM), Temesgen Magule
Olango (ALMAVIVA), Andrea Falconi
(Martel), Sebastian Werner (TUB),
Sepideh Masoudi (TUB), Hine Samantha
(ALMAVIVA), Eduardo Brito (CYB)

V0.3 08/10/2024 Ready for the second contributions round Katherine Barabash (IBM)

V0.4 16/10/2024 Integrated the second contributions round Katherine Barabash (IBM), Ronen Kat
(IBM), Mohamed Mahameed (IBM), Hine
Samantha (ALMAVIVA), Temesgen
Magule Olango (ALMAVIVA)

V0.5 22/10/2024 Integrated the third contributions round Katherine Barabash (IBM), Ronen Kat
(IBM), Mohamed Mahameed (IBM),
Temesgen Magule Olango (ALMAVIVA),
Gabriele Cerfoglio (Martel), Eduardo
Brito (CYB), Sergio Sestili (ALMAVIVA),
Rizkallah Touma (i2CAT)

V1.0 28/10/2024 Ready for internal review Katherine Barabash (IBM), Ofer Biran
(IBM), Temesgen Magule Olango
(ALMAVIVA), Sergio Sestili (ALMAVIVA),
Hine Samantha (ALMAVIVA), Rizkallah
Touma (i2CAT), Bruno Feitas
(UBIWHERE), Fernando Castillo (TUB)

Final 31/10/2024 Ready for submission All authors and reviewers

DISCLAIMER

Funded by the European Union (TEADAL, 101070186). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them. This
work has received funding from the Swiss State Secretariat for Education, Research and
Innovation (SERI).

COPYRIGHT NOTICE

© 2022 - 2025 TEADAL Consortium

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 3 of 55

Project funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: R

Dissemination Level

PU
Public, fully open, e.g. web (Deliverables flagged as public will be automatically
published in CORDIS project’s page)

✓

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 4 of 55

EXECUTIVE SUMMARY

This document reports the WP4 results obtained during the second period of the TEADAL
project working towards the main goal of WP4 – addressing the challenges of managing and
controlling data sharing flows in the stretched data lake.

In the previous deliverable, D4.1 [4], we have presented the overall control plane concept for
TEADAL and proposed mechanisms for realizing the TEADAL data lake on a cloud continuum
composed of multiple locations of different types, focusing on resource usage optimization, as
well as on creation, deployment, and management of the TEADAL Federated Data Products
(FDPs). Initial architectural decisions and technology choices presented in D4.1[4] were
verified as part of the integration activities started during the second project period and, in this
respect, the current document updates the previous one.

In addition to updating and refining the D4.1 [4], this new deliverable:

 Provides more details on control and management aspects of the TEADAL framework,
informed by the evolution of the overall TEADAL architecture (Chapter 8 of D2.3 [3]), by
the deeper understanding of TEADAL pilots requirements (Chapters 1 to 7 of D2.3 [3]),
as well as by the initial integration activities (D6.2 [7]).

 Presents the technical aspects of integrating the energy saving considerations related to
data sharing and data distribution, developed in WP3 (D3.2 [5]), as well as the security
and trust features of the TEADAL federation developed in WP5 (D5.2 [6]).

 Reports on new research activities related to simplifying and automating the data sharing
processes in the TEADAL federation. Here, the focus is on processes involved in creation,
deployment, and management the TEADAL Shared Federated Data Products (sFDPs)
and providing the description of new automated sFDP generation tools created using
advanced technologies based on generative AI.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 5 of 55

TABLE OF CONTENTS

Disclaimer ..2

Copyright notice ...2

1. INTRODUCTION ..9

1.1 Stretched Data Lake as Part of TEADAL Federation ..9

1.2 Updated TEADAL Control Plane ... 11

1.3 Advance Date Automation .. 11

1.4 Advance Control Capabilities .. 12

2. UPDATED TEADAL CONTROL PLANE ... 14

2.1 TEADAL Performance Metadata: the AI-based Approach 14

2.2 TEADAL Metadata for Energy... 25

2.3 Multi-location Control Flows in TEADAL Federation .. 26

3. ADVANCE TEADAL AUTOMATION .. 34

3.1 Generative AI Integration (GIN) Library ... 34

3.2 Assisting the Data Consumer ... 39

3.3 Assisting the sFDP builder .. 41

4. ADVANCE CONTROL PLANE FEATURES AND SERVICES 45

4.1 Security, privacy and Compliance ... 45

4.2 Performance and Efficiency .. 50

5. TOWARDS THE NEXT ITERATION... 53

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 6 of 55

LIST OF FIGURES

FIGURE 1: TEADAL DATA SHARING FEDERATION EXAMPLE .. 10

FIGURE 2: AI-DPM ARCHITECTURE FROM D4.1 .. 15

FIGURE 3: THANOS SCREENSHOT IN AI-DPM... 16

FIGURE 4: THANOS CONFIGURATION IN AI-DPM ... 17

FIGURE 5: MEMORY METRICS STATUS DATA IN AI-DPM .. 18

FIGURE 6: MEMORY USE PREDICTIONS WITH LSTM ... 20

FIGURE 7: MEMORY-RELATED TIME-SERIES DATA... 21

FIGURE 8: MEMORY RESULTS OF KMEANS CLUSTERING ... 21

FIGURE 9: AI-DPM EXPERIMENTATION SETUP ... 24

FIGURE 10: SMART CONTRACT INITIALIZATION AND CONNECTION BY ADVOCATE 25

FIGURE 11: EXAMPLE OF A TEADAL PIPELINE FOR CREATING AN FDP 31

FIGURE 12: EXAMPLE OF A TEADAL PIPELINE FOR CREATING AN SFDP 31

FIGURE 13: GIN LIBRARY COMPONENTS .. 35

FIGURE 14: EXAMPLE DATA REQUEST (CONNECTOR) SPECIFICATION 38

FIGURE 15: EXAMPLE TRANSFORM SECTION IN THE SPECIFICATION 38

FIGURE 16: USING GIN TO ASSIST THE DATA CONSUMER .. 39

FIGURE 17: CODE EXTRACT FOR GENERATING AND RUNNING A DATA REQUEST 40

FIGURE 18: CODE EXTRACT FOR LOADING APIS INTO THE VECTOR STORE 41

FIGURE 19: SAMPLE ASG SPECIFICATION BASED ON THE MOBILITY USE-CASE 42

FIGURE 20: THE AUTOMATIC SFDP GENERATION TOOL ... 43

FIGURE 21: PYTHON CODE FOR RUNNING AN ASG TOOL ... 44

FIGURE 22: TEADAL DATA PRODUCT CREATION AND ACCESS FLOWS........................... 46

FIGURE 23: ARGO WORKFLOW SPECIFICATION YAML .. 48

FIGURE 24: ARGO WORKFLOW PIPELINE EXAMPLE .. 48

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 7 of 55

LIST OF TABLES

TABLE 1 : PREDICTIVE ANALYSIS MODEL PERFORMANCE .. 19

TABLE 2 : GIN LIBRARY METHODS... 36

TABLE 3 : SAMPLE NOTEBOOKS FOR DATA CONSUMERS ... 40

TABLE 4 : ASG REPOSITORY AND MODULE ... 43

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 8 of 55

ABBREVIATIONS

AI-DPM AI-driven Performance Monitoring

AIOps Artificial Intelligence for IT Operations

ASG Automatic sFDP Generation

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

EDA Exploratory Data Analysis

FDP Federated Data Product

GRU Gated Recurrent Units

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IT Information Technology

I/O Input / Output

JWT JSON Web Token

LLM Large Language Model

LSTM Long Short-Term Memory Neural Network

MCC-C Multi-cloud Computer Compiler

MPC Multi-Party Computation

MSE Mean Squared Error

OIDC OpenID Connect

OPA Open Policy Agent

PoC Proof-of-concept

PCA Principal Component Analysis

RAG Retrieval-Augmented Generation

RBAC Role-based access control

REST REpresentational State Transfer

SFDP Shared Federated Data Product

TEE Trusted Execution Environment

TTMs Tiny Time Mixers

YAML Yet Another Markup Language

ZKP Zero-Knowledge Proof

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 9 of 55

1. INTRODUCTION

One of the main value propositions of the TEADAL project is to create a federated data sharing
framework whereby data providers and data consumers can achieve their data usage goals in
a more trustworthy, privacy-aware, and energy-efficient way. TEADAL platform achieves this
by combining and expanding the Data Lake and Data Mesh concepts, so that the benefits that
both businesses and people obtain from data sharing can be achieved across organizational,
geographic, and technology boundaries, while minimizing the additional complexity and cost
as much as possible.

As a technology work package of the project, WP4 is tasked with the architecture of the
TEADAL stretched data managing and sharing platform and, mainly, with the control plane and
the integration aspects of the project. The updated state of the overall project architecture is
presented in Chapter 8 of D2.3 [3] and the initial architecture of the control plane and the data
management components was shared in D4.1 [4]. This deliverable zooms into the architectural
details developed in WP4 over the second project period.

This section is an overview of the deliverable structure and its main contributions. Next, Section
2 describes updates on the previous deliverable, Section 3 focuses on newly developed
technologies for TEADAL data pipelines automation, Section 4 summarizes details on
TEADAL data pipelines optimization, and Section 5 concludes the document outlining the next
period plans.

In the reminder of this section, we summarize the contributions of this deliverable: updates to
the TEADAL stretched data lake requirements in Subsection 1.1; updates to the TEADAL
Control plane in Subsection 1.2; new, gen-AI based, capabilities for automating the TEADAL
data sharing processes are summarized in Subsection 1.2; finally, Subsection 1.31.4
summarizes the integration aspects of the advanced energy-conserving capabilities developed
during the second TEADAL iteration.

1.1 STRETCHED DATA LAKE AS PART OF TEADAL FEDERATION
The role of Control Plane is central to the TEADAL data sharing capabilities and is required by
all the pilots. The purpose of the Control Plane is the deployment and runtime orchestration of
data sharing workloads in a stretched data lake, across its different locations. Runtime
orchestration mostly consists of managing workload lifecycles, starting with the placement of
individual components on suitable infrastructure elements, overseeing component operations,
while running, and decommissioning the resources as soon as the work is completed. As was
described in D4.1 [4], TEADAL Control Plane is not the sole decision plane of the project.
Rather, it works in cooperation with other components of the TEADAL platform by executing
actions based on these other components' inputs, to achieve data management goals in the
best possible way. For example, in cooperation with the Trust Plane, which might determine if
certain components misbehave, the Control Plane is responsible to stop or to quarantine the
culprits. Another example is making workload placement decisions based on performance and
energy consumption data collected from the nodes and analyzed by the Data Governance
components, developed in WP3. Initial Kubernetes based Control Plane architecture was
presented in D4.1 [4] and its optimization capabilities were demonstrated as part of the first
periodic review, for a single TEADAL location. Since then, the Control Plane requirements
were further extended to support each one of the individual TEADAL pilots. As can be seen in
D2.3 [3], most pilots include multiple organizations and multiple locations, therefore Control
Plane capabilities need to support the Trust Plane, Data Governance, and the TEADAL data
pipelines orchestration across the whole federation.
To illustrate the multi-location and multi-organization requirements, we’ll use a specific
example in Figure 1, where one possible configuration of TEADAL data sharing federation is

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 10 of 55

presented, with three different organizations, Organization A, Organization B, and
Organization C. In this example, each organization has its own personnel managed by its own
Identity Management mechanisms, as well as its own internal datasets, and its own IT
infrastructure used to host internal data and services, as well as data and services of the
TEADAL Federation. Each organization can decide which datasets and infrastructure to share
with the federation members, as well as who are the organization’s people that might need
access to other organizations’ data. and what their data access permissions are. According to
the TEADAL platform architecture and the data sharing decisions made in WP2, the IT
infrastructure is shared in the form of TEADAL Nodes while the data is shared in the form of
Federated Data Products (FDPs). This means that each organization installs one or more
TEADAL Nodes in one or more locations, either on-prem, cloud, or edge, following the
TEADAL GitOps procedures defined in WP6. These TEADAL Nodes join the TEADAL
Federation and host a use-case-dependent set of TEADAL services. In addition, these nodes
can host one or more internal data sources. Data, which the organization has decided to share
is exposed as TEADAL FDPs and is published in the TEADAL Catalog. In the example
presented in Figure 1, we show Organization A with three TEADAL Nodes one of which is
running on the edge; Organization B with three TEADAL Nodes, one of which has confidential
computing capabilities, and Organization C with only one TEADAL Node.

FIGURE 1: TEADAL DATA SHARING FEDERATION EXAMPLE

As described in previous deliverables, the FDPs each organization decided to share are
published inside a federation’s data sharing catalog where they can be discovered by other
organizations. All federation members can discover the FDPs and, if interested, contact the
FDP owner to formulate a custom data usage contract. As soon as a contract is agreed
between the data producer and data consumer, a new custom data product is created that
consumes the FDP APIs and exposes new APIs as defined by the contract. This new data
product is a TEADAL Shared Federated Data Product or sFDP. In the example presented in
Figure 1, Organization A has six internal datasets stored in two different locations and
accessible only by Organization A personnel according to its internal policies, exposes three
FDPs deployed in two different locations, and does not consume other federation members’
data; Organization B has three internal datasets stored in one location, exposes two FDPs
deployed in the same location where the data is stored, and consumes data exposed by
Organization A and Organization C through two different sFDPs; Organization C has three

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 11 of 55

internal datasets stored in one location along with the one FDP and consumes data exposed
by Organization B. In addition, Figure 1 exemplifies different type of sFDPs: while the sFDP
whereby Organization C consumes Organization B’s FDP, is a simple single component
service, the two sFDPs used by Organization B are more complex and involve several
transformation steps implemented as separate service components deployed in different
locations to satisfy non-functional TEADAL requirements such as the need to be executed near
where the data is stored or to be protected by the advanced confidential computing capabilities
like Trusted Execution Environment (TEE), e.g. the TEE Node of Organization B in Figure 1.

In addition, Figure 1 shows the TEADAL control plane functions required to operate multiple
FDPs and sFDPs across multiple TEADAL Nodes belonging to multiple organizations and
installed in different locations. This common functionality is implemented as TEADAL services
hosted on selected TEADAL Nodes inside the federation, and includes the TEADAL Catalog,
the Data Governance Services developed in WP3, the Trust Management services developed
in WP5, and the GitOps services developed in WP6 and extended in WP4 to enable multi-
location and multi-cluster operations.

1.2 UPDATED TEADAL CONTROL PLANE
The initial control plane architecture was presented in D4.1[4] , as part of the first phase single-
location demonstration at the first project review, featuring the ability to optimize the data
processing pipelines based on resource utilization and application metrics. In addition, D4.1[4]
formulated the second period goals towards refining and extending the first period
achievements in three different directions. Here is a summary of these three goals, together
with how they are addressed in the current deliverable:

1. Extending the capabilities for monitoring and optimizations through metadata creation,
analysis, and insight extraction. For this goal, in the second period, the team has focused
on integrating the energy and performance related monitoring and optimizations developed
in WP3 (D3.2[5]). This is described in more details in Subsections 2.1 and 2.2.

2. Demonstrate how the proposed control and management capabilities support multiple
locations, simplifying operations of a multi-location data lake. We describe multi-location
control flows in Subsection 2.3

3. Demonstrate a data processing pipeline partitioned for the purpose of implementing energy
efficiency, data gravity, data friction policies, and to be able to apply the insights obtained
from monitoring and observing the data lake and analysing the collected data. An example
of such a pipeline is described in Subsection 2.3.2.

1.3 ADVANCE DATE AUTOMATION

One of the major obstacles for leveraging data for cross-boundary analytics is the need to rely
on manual steps as part of the data handling and sharing life cycles. During the early phases
of the project, a need for several such manual steps were identified. For example, human
developers are expected to create configuration files and software required for serving
datasets as data products, as well as to create configurations and software required for
consuming the data products published for sharing as FDPs and serving their data as sFDPs
according to the agreements sealed between the data producer and data consumer. The
former case can be referred to as a TEADAL FDP creation pipeline and the latter as a TEADAL
FDP to sFDP transformation or a TEADAL sFDP creation pipeline. Both cases rely on
traditional software development patterns, and thus, depend on software development teams
as part of establishing and maintaining the data sharing processes. This manual approach can
potentially be slow, and thus, hinder the velocity of achieving adequate levels of data access
and data sharing as part of the TEADAL federation. To cope with this, we have conceived a
possibility for employing novel generative AI technologies such as agentic systems to

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 12 of 55

automate these manual steps whenever possible. Our first realization of this idea is through a
concept of Automatic sFDP Generation (ASG) that, given an OpenAPI [12][24] specification of
the source FDP and a contract between the data producer and data consumer, generates the
deployment artifacts for a new sFDP that complies with the contract and is ready to be
deployed and consumed as a shared data product. We start with the simplest cases where the
sFDP can be a single component data pipeline acting as a proxy to the source FDP. Such
sFDP will be generated as a single REpresentational State Transfer (REST) server that can
access the source FDP, perform the required data transformations and serve the result as
prescribed in the sFDP OpenAPI specification. For the less trivial cases, where data needs to
be subjected to several transformations. under several, possibly location dependent policy
rules or unique infrastructure requirements, the ASG componentry will have to be extended to
produce multi-component pipelines that, in addition to a data serving REST server, requires
the deployment of additional components that realize the required multi-step data
transformation chain.

In addition to automating the generation of the sFDP pipelines, ASG is planned to offer
automation of other processes such as defining the sFDPs and accessing the sFDPs by the
end users, e.g., through convenient end user interfaces, such as a Notebook or another type
of dashboard.

Some specific examples of current ASG capabilities are:

1. Given the OpenAPI definition of the source FDP, generate a simple sFDP acting as a
connector to a source FDP, like a proxy. Here, the result is a ready-to-be-deployed sFDP
server along with its deployment configuration files. No data transformations are performed
in this case.

2. Given the OpenAPI definition of the source FDP and the list of the transformations required
to be applied to FDP’s data before serving it to the sFDP user, generate a data transforming
sFDP. In this case, the result is also a ready-to-be-deployed REST server along with its
configuration files, but this time the server applies the automatically generated
computational chain as an additional step between getting the data from the source FDP
and sending it as a reply to the sFDP user request. This automatically generated
computational chain implements data transformations provided as input.

3. Given a description of required data transformations based on a producer-consumer
contract, provided in human language as a list of the computation steps to be applied to
FDP’s data before serving it to the sFDP user, interpret the list and generate an OpenAPI
specification of the resulting sFDP. This capability augments the sFDP generation
capability by eliminating the need to manually construct the OpenAPI specification required
for the end users to access data shared as an sFDP.

This new ASG componentry will be further described in Section 3, along with the discussion of
the cost and energy considerations involved in applying the generative AI technologies it is
based upon, e.g. Large Language Models (LLMs).

1.4 ADVANCE CONTROL CAPABILITIES
As soon as sFDP deployment artifacts are created, either by ASG as described above and in
Section 3, or manually by the software development teams, the TEADAL framework takes care
of the optimal deployment and serving of the sFDP to its end users through the following
advanced capabilities:

1. Provide a REST endpoint and/or a more convenient interface, e.g. dashboard or Notebook,
for the end user of the sFDP.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 13 of 55

2. Extend the data lake monitoring and add analysis and insight capabilities, creating dynamic
metadata that will help optimizing the sFDP deployment, as well as the overall use of the
TEADAL data lake.

3. Extend the multi-component sFDP creation pipeline specification to support deploying to
multiple locations and demonstrate how the control plane simplifies the management of a
multi-location data lake.

4. Demonstrate how sFDP placement is optimized, under the policy constraints, for the
purpose of implementing energy efficiency, data gravity, data friction policies, and to be
able to apply the insight obtained from monitoring and observing the data lake.

5. Whenever possible, the sFDP deployment optimization goals (in addition to the policy
restrictions) will be demonstrated by the resource performance and energy considerations
following the methodology put forward in D3.2 [5].

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 14 of 55

2. UPDATED TEADAL CONTROL PLANE

In this section, we describe how the TEADAL Control Plane has been advanced as part of the
overall project architecture and pilot definitions (D2.3 [3]) and following the results in the pilot
definition and the integration efforts (D6.2 [7]).

TEADAL control plane, responsible for orchestrating the data lake workloads over the data
lake infrastructure, heavily depends on monitoring and collecting various types of metadata to
track runtime optimization parameters such as workload performance, infrastructure usage,
energy use, etc., as well as on metadata to track privacy and security aspects such as data
and API accesses, authentication requests, etc. In the current iteration, TEADAL capabilities
for monitoring and optimizations through metadata creation, analysis, and insight extraction
were greatly extended, focusing on integrating the energy-based monitoring and optimizations
developed in WP3 (D3.2 [5]) as well as the privacy and trust controls developed in WP5 (D5.2
[6]).

We start this section by describing the AI-based approach for TEADAL performance metadata
in subsection 2.1, then provide an update on energy related metadata in subsection 2.2, then
describe the updated approach for extending the control plane to multi-location cases in
subsection 2.3.

2.1 TEADAL PERFORMANCE METADATA: THE AI-BASED
APPROACH

Metadata on IT resource utilisation (RAM, Disk Memory usage) is essential for the proactive
management and optimization of IT operation performance. In TEADAL, we are using such
metadata to detect anomalies and generate predictive insights, which are made available to
the Control Plane deployment optimizer to let it define effective strategies to optimise data
flows. Our approach is based on Artificial Intelligence for IT Operations (AIOps) and uses
metadata to provide valuable insights into system behaviour. Logs, metrics, and event data,
collected from multiple IT resources belonging to one or more organisations in a TEADAL
federation context, form the core of this metadata.

Building upon the initial feasibility study and the foundational design of AI-driven Performance
Monitoring (AI-DPM) in the first iteration as detailed in D4.1[[4]], AI-DPM is being developed
following a series of experimental implementations, designed to refine algorithms using
metadata from diverse sources incrementally. The succession of the experimental process
begins with accessing valuable publicly available metadata from distributed systems, providing
a broad foundation for initial algorithm development and testing. The activities carried out
during the reporting period focused on the Proof of Concept (PoC) experimentations, which is
the first phase of the AI-DPM experiment series. In this document we report the activities of
the PoC experimentation along with the activities related to the study and the design of
additional experiments, providing the complete experimentation path that we’ll follow in the
remaining months of the project to reach AI-DPM maturity.

2.1.1 Proof of Concept Experimentation of AI-DPM

During the reporting period, the PoC phase involved using public open data to create a
foundation for AI-DPM. The PoC dataset scraped from a Kubernetes cluster using Prometheus
[19], includes up to 80 key metrics, and the most reliable data we were able to obtain after
several attempts of searching and generating relevant datasets for our experimentation.
Specifically, we analysed a range of metrics — 8 CPU, 11 disk, and 47 memory metrics — for
the development and testing of the Anomaly Detection and Predictive Analysis AI models. Both

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 15 of 55

models have been experimented by using different algorithms, as described in the following
subsections, although we only present a subset of these results. The detailed report of PoC
results, along with the Jupyter Notebook(s) that provide the interactive computational
environment that allows us to write and execute code, visualise data, and include explanatory
notes, are available in the TEADAL project repository AI-DPM PoC folder1. Other than
evaluating the AI algorithms, the PoC also concentrated on managing metadata, which
involved sourcing credible time-series data, preprocessing it, and performing Exploratory Data
Analysis (EDA). Here we present key accomplishments and advancements made during the
reporting period in experimental implementations in terms of:

 Metadata sourcing and management methodologies for building AI models,

 Development and testing of core AI models for performance monitoring,

 Results of the PoC experimentation and data lake monitoring implications,

 Directions for integrating new tools and technologies to enhance data sourcing, model
development, testing, and performance improvement.

2.1.1.1 Metadata Sourcing and Management in the AI-DPM TEADAL Ecosystem

The AI-DPM system has been designed upon the monitoring ecosystem of TEADAL nodes
deployed on Kubernetes, using open-source toolsets to ensure wide-ranging observability,
alerting, and visualisation capabilities. This ecosystem primarily consists of Prometheus [19]
for metrics collection and storage, Prometheus Alertmanager2 for alert processing and
notification, and Grafana [20] for visualisation and dashboarding (as introduced in previous
report D4.1 [4], see Figure 2.

FIGURE 2: AI-DPM ARCHITECTURE FROM D4.1

1 https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-dpm/-/tree/main/PoC-public-dataset
2 https://prometheus.io/docs/alerting/latest/alertmanager/

https://gitlab.teadal.ubiwhere.com/teadal-tech/ai-dpm/-/tree/main/PoC-public-dataset
https://prometheus.io/docs/alerting/latest/alertmanager/

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 16 of 55

AI-DPM extends this triad by incorporating Thanos [21], which addresses the limitations of
Prometheus in terms of long-term storage and global query capabilities. This integration
enables AI-DPM to support analytics on historical data, facilitating predictive resource
utilisation, and anomaly detection using AI models for monitoring the TEADAL data lake
infrastructure. Predictions and anomalies can be sent to Prometheus in order to feed Grafana
dashboards with prediction time series and to set up alerts and notifications for specific
anomalies. At the current stage of the project, TEADAL components, such as the Control Plane
optimizer, are intended to access prediction and anomalies through Rest APIs returning the
[TEADAL node, actual time, time window, predicted value] predictions array

and the [TEADAL Node, node status, anomaly_flag] anomalies array.

At the core of the AI-DPM, Prometheus serves as the primary metrics collection and storage
system. Its seamless integration with Kubernetes allows the scraping of metrics from various
services and components within the TEADAL data lake, providing the raw data necessary for
AI-driven analysis. The pull-based model and service discovery mechanisms of Prometheus
ensure dynamic and scalable metric collection from the data lake infrastructure. Working with
Prometheus, the AlertManager component processes alerts based on predefined rules, which
leverages TEADAL prediction and anomalies detection AI-model generated outputs. This
integration allows the AI-DPM system to provide intelligent, context-aware alerting that can
adapt to the evolving patterns in the data lake's performance based on historical data and
contexts.

To support the advanced analytics capabilities of the AI-DPM, Thanos usage extends the
functionality of Prometheus by addressing its limitations in long-term storage and global
querying. This is crucial for training and running AI models that require extensive historical
data. Thanos's components work together to provide unlimited retention of metrics and a global
query layer: the Sidecar uploads data to object storage, the Store Gateway serves this data,
the Compactor optimises long-term storage through downsampling, and the Querier enables
querying across multiple Prometheus instances and object storage. This setup allows the AI-
DPM system to maintain and analyse historical metrics over extended periods, enabling trend
analysis, anomaly detection, and predictive modelling that form the core of TEADAL's AI-driven
performance monitoring.

Grafana serves as the visual interface for the outputs of AI-driven predictive analytics. Its
extensive library of visualisation options and plugin architecture allows for the creation of
tailored views that can present insights for facilitating quick decision-making and performance
optimization.

FIGURE 3: THANOS SCREENSHOT IN AI-DPM

As part of developing the AI-DPM system, we conducted initial experiments to set up a basic
monitoring infrastructure on a local server. This experimental phase focused on implementing
key components of the monitoring ecosystem, specifically installing and configuring
Prometheus for metrics collection, Grafana for visualisation, and Thanos for persistence. This

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 17 of 55

initial experiment provided valuable insights into the foundational aspects of our monitoring
system. Figure 3 displays the Thanos dashboard, highlighting key elements like the sidecar
endpoint and the store endpoint. It also includes tabs for various functionalities such as "Query"
for running Prometheus queries, "Graph" for visualising metrics, and other tabs for managing
and interacting with Thanos's extended features, including data retrieval and storage across
clusters.

Building on this foundation, we proceeded deeper into the configuration of system-level metrics
collection, with a particular focus on CPU, memory, and disk performance. Our experiments
explored capturing metrics such as CPU usage percentage, memory utilisation, and disk
read/write operations, storing them as time series for trend analysis in Thanos, while testing
various Prometheus configurations. Below are examples of basic simplified Prometheus
configuration that sets a global 15-second scrape interval and defines a single job for memory
usage on localhost:9100. We extended our learning with Thanos with the goal of configuring
basic scraping, remote write, and storage functionalities to understand how Thanos integrates
with Prometheus and object storage for long-term data retention readily available for training
and testing AI algorithms for AI-PDM. The simplified Prometheus and Thanos configuration
are presented in Figure 4.

FIGURE 4: THANOS CONFIGURATION IN AI-DPM

Through these experiments, we gained valuable insights into effectively collecting, managing
and storing metadata ready with sufficiently aggregated and persisted data, for training and
testing AI algorithms, which is crucial for the next AI-DPM series of experiments.

2.1.1.2 AI_DPM PoC Experimentation with Public Dataset

The dataset used for PoC experimentation uses OpenTSBD [22] notation, which is the format
of the Prometheus metrics scraped from specified hosts/targets from any distributed systems,
as will be the case in the TEADAL data lake. The data is time-series in nature encompassing
CPU usage, memory usage, and disk I/O, among others. This public dataset, collected from a
cluster of 332 compute nodes over a five-day period, provided the PoC experimentation data

for predictive insights and anomaly detection to investigate the system performance.
“Performing” in this case can relate to different aspects — availability, level of stress, under-
utilisation of resources, etc.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 18 of 55

In the contexts of AIOps, metrics are numeric measures over intervals of time of the internal
states of the system, in this case a distributed system or the TEADAL data lake. Thus, metrics
are the main piece of information in the monitoring system and more so for AI-DPM. A
recorded metric can be described as a combination of two elements, identification, and sample.
For example, the Prometheus metric is composed of Identification (with Metric Name and
Labels) and Sample (with Timestamp and Value). Examples of the key metrics scraped by
Prometheus include system metrics like

 node_cpu_seconds_total for CPU usage

 node_memory_MemAvailable_bytes for available memory

 node_disk_io_time_seconds_total for disk I/O time.

For the PoC, we used all three (CPU, memory and disk I/O) datasets for developing and testing
core AI models. Figure 5 shows an example of memory metrics (used node memory and free
node memory) status data in a five-day window in the 332 node-cluster that was used for PoC

experimentation.

FIGURE 5: MEMORY METRICS STATUS DATA IN AI-DPM

2.1.1.3 Predictive Analysis Models

The AI-driven platform monitoring approach leverages Machine Learning (ML) to enhance
traditional monitoring of infrastructure, applications, and services. Prediction metadata can
offer insights into expected infrastructure utilisation (e.g., CPU, Memory, or Disk I/O) for definite
future time windows. In the context of the TEADAL project, this generated new metadata will
be available to the Control Plane as more specific metadata for enabling system optimization.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 19 of 55

The PoC experiment has explored four classical predictive analysis algorithms including, Long
Short-Term Memory Neural Network (LSTM) [8], Gated Recurrent Units (GRU)3 [9], IBM’s Tiny
Time Mixers (TTMs) [10], and Facebook's Prophet (Prophet) [23]. These models were applied
to a five-day dataset of node memory usage collected from a distributed cluster computing
environment. The experiment utilized data from the first two days for training and the third day
for testing, with a temporal window considering 60 minutes of historical data to predict the next
20 minutes of available node memory.

Performance evaluation based on Mean Squared Error (MSE) as presented in Table 1
revealed that GRU performed best with an MSE of 0.120060, closely followed by LSTM at
0.123420. TTMs-r1 from IBM showed moderate performance with an MSE of 0.331747, while
Facebook's Prophet had the highest MSE at 0.420203. These results suggest that recurrent
neural network architectures (GRU and LSTM) were more effective in capturing the temporal
patterns and dependencies in the node memory usage data compared to the other
approaches. In other cases, TTMs-r1 outperformed other models, such as in predicting the
node disks write time (seconds) metric, with GRU as the second-best performer.

TABLE 1 : PREDICTIVE ANALYSIS MODEL PERFORMANCE

Predictive analysis

AI models

Mean Squared Error (MSE)

Node memory used

(bytes)

Node disks write time

(seconds)

LSTM 0.123420 0.158195

Prophet 0.420203 1.483038

GRU 0.120060 0.131413

TTMs – r1 (IBM) 0.331747 0.010300

Prediction visualisation plots for the investigated four models are provided in the TEADAL
project repository AI-DPM PoC folder. In Figure 6, memory usage predictions for different node
instances using the better performing model, that is LSTM. In the figure, historical data, actual
values, and model predictions are shown for each instance. While the predictions align well
with actual data for some instances, they show discrepancies for others. Overall, the results
suggest the need for further model testing and potential model ensemble approaches. All code
snippets and notebooks are available in the TEADAL project repository.

3 GitHub Selective Update GRU

https://github.com/ezpea/SelectiveUpdateGru

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 20 of 55

FIGURE 6: MEMORY USE PREDICTIONS WITH LSTM

2.1.1.4 Anomaly Detection Models

The AI-driven platform monitoring approach can also detect anomalies, facilitating proactive
management and optimization of resources. For example, anomaly flag metadata can identify
stressed or under-utilised resources.

The anomaly detection experiment, utilising a combination of statistical threshold methods and
K-means clustering, analysed available node memory time-series data from a 332-node
cluster. Focusing on 11 memory-related features, the analysis identified 4 nodes (1.2% of the
cluster) exhibiting anomalous characteristics, with 26,624 anomalies detected out of 2,203,252
data points, representing a 1.21% anomaly rate. These findings have significant implications
for cluster management, potentially serving as an early warning system for memory-related
issues, enabling better resource allocation and load balancing, and guiding predictive
maintenance efforts. At this part of the project, despite not having real TEADAL data for
validation, the PoC can provide valuable insights and a foundation for further refinement of
anomaly detection techniques in AI-DPM in TEADAL’s monitoring ecosystem. Notebooks with
code snippets and more results are made available in the TEADAL project repository AI-DPM
folder.

Figure 7 below shows the distribution of five-day memory-related time series data for some of
the metrics recorded across 332 nodes. It highlights the range and variation of each metric,
helping to understand the overall patterns and deviations in the dataset and providing insights
into system operating conditions.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 21 of 55

FIGURE 7: MEMORY-RELATED TIME-SERIES DATA

The left plot in Figure 8, generated using Principal Component Analysis (PCA), displays data
projected onto the first principal components. Each dote indicates a node instance with its
timestamp recorded and it is labeled as outlier (1, red colored) or non-outliers (0, black colored)
based on KMeans clustering. The plot moderately separates clusters, with outliers standing
apart from the main group, aiding in anomaly detection. The right-side plot, a node instance
with its timestamp recorded for the entire five-day window and the specific anomaly points
detected using the statistical method.

FIGURE 8: MEMORY RESULTS OF KMEANS CLUSTERING

2.1.1.5 Anomaly Detection Models

Our initial PoC experimentation with public metadata provided valuable insights and revealed
several important implications for the next phase AI-DPM development. First, realising four

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 22 of 55

different predictive models for this PoC offers several key advantages. The development and
testing of models enabled a comparison of algorithms and the establishment of a performance
baseline for benchmarking. The approach also demonstrates flexibility in handling different
types of metrics beyond just memory usage, providing insights into each model's strengths
under specific conditions. This multi-model strategy lays the groundwork for potential
ensemble methods, allows for scalability assessment, and offers adaptability to changing
environments. Ultimately, this diverse modelling approach enhances the ability to select and
refine the most effective predictive techniques for complex, real-world scenarios involving
multiple metrics and evolving system characteristics of TEADAL.

Nevertheless, the results should be carefully examined for implications in TEADAL data lake
AI-DPM. The system difference - the PoC was conducted on a dataset sourced from a system
that might differ from the target TEADAL data lake environment in terms of the microservices
running and the patterns observed in the data. The PoC data - the fact that the PoC data is not
labelled means that it lacked ground truth data for validation of anomalies, moreover, the data
used can enable only short training and testing periods, which may not capture long-term
trends or seasonal patterns resource use in the infrastructure.

Overall, the results of the PoC provided important future directions that could involve extending
the study to longer periods, incorporating multiple performance metrics, and exploring
ensemble methods that combine the strengths of different models. Additionally, conducting
experiments on datasets resembling the TEADAL data lake environment or the TEADAL
environment itself would be crucial for validating the models' effectiveness. Further
investigation into the scalability of these models especially considering the specific
characteristics of the TEADAL environment and integrating the results of algorithms into the
TEADAL monitoring ecosystem would be required for real-world applications. Details of this
important future direction is provided in the following section.

2.1.2 AI_DPM Full Experimentation Design

While progressing with AI-DPM experimentations, we started exploring approaches to
enhance the data-sourcing strategies and optimise model development and testing
approaches. In this regard, the two key directions we considered for future work are the
creation of a dedicated experimentation environment and adding Large Language Models
(LLMs) capabilities into our forecasting and anomaly detection AI model stacks.

2.1.2.1 µBench for Creating an AI-DPM Experimentation Environment

The first PoC experimentation with public metadata highlighted the need for more specialised
simulated metadata. In order to address this need, we started to design a dedicated
experimentation environment and to seek for a suitable metadata generation tool.

Our researchers have discovered and introduced to the experimentation process the µBench4
[11], an open-source software that emulates real-world Kubernetes cluster scenarios. It is
distributed under the BSD 4-Clause License and includes software developed by University of
Rome Tor Vergata and its contributors.

4 https://github.com/mSvcBench/muBench

https://github.com/mSvcBench/muBench

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 23 of 55

µBench is a tool designed to assess the performance of microservices within a Kubernetes
environment. It allows users to simulate the behaviour of an application composed of multiple
microservices (such as web services or databases) by performing load tests and collecting
metrics like CPU, memory, network, and disk space usage. µBench provides a comprehensive
monitoring framework consisting of Prometheus, Grafana, Istio, Kiali, and Jaeger through
which to observe and display the performance of the applications.

In the context of PoC experimentation, µBench enables the simulation of a distributed
microservice environment that mirrors key aspects of a TEADAL data lake's infrastructure,
such as computing, storage, and data processing components. By creating mock services and
running load tests, µBench can generate key performance metrics under various workloads,
allowing experimentation with real time data before the TEADAL testbeds' data lake
infrastructure is fully operational. Moreover, µBench simplifies the experimentation process by
facilitating the configuration of Prometheus, Grafana, and Thanos, while managing the end-to-
end data flow for the AI models.

To improve the initial PoC, we plan to integrate µBench into a dedicated experimentation
environment with two Virtual Machines (VMs) provided by ALMAVIVA.

µBench is crucial for creating

1. TEADAL-Like Workload Simulation: µBench will be used to generate synthetic workloads
that closely mimic the characteristics of the TEADAL data lake environment, including its
unique microservices and data patterns.

2. Controlled Anomaly Injection: µBench can be used to systematically inject anomalies and
resource stress into the test environment, providing a much-needed dataset for training
and evaluating core AI models.

3. Benchmark for Model Comparison: by establishing a consistent testbed with µBench, it is
possible to compare more accurately the different versions of core AI models and assess
improvements over time.

2.1.2.2 Augmenting Classical AI Models with LLMs

While proceeding with testing classical AI models, we started investigations to explore the
potential of adding Large Language Models (LLMs) into our forecasting and anomaly detection
classical model stacks.

This novel approach could offer several benefits. LLMs are useful for monitoring both on-
premises and cloud-native resource performance monitoring. In addition, the use of LLMs
alongside classical approaches is essential to leverage their advanced capabilities in handling
complex, high-dimensional data. LLMs excel in capturing intricate temporal dependencies and
correlations, reducing the need for extensive manual feature engineering and potentially
increasing accuracy and adaptability. By conducting a PoC with LLM model working on real
data generated in a dedicated experimentation environment, we will evaluate their
performance in real-world scenarios, compare it directly with our existing approaches, and
assess improvements in prediction accuracy, anomaly detection precision, benchmarking and
overall system scalability.

The combined approach will ensure that we are utilising the most robust and effective and up-
to-date tools available for monitoring the performance of data lake infrastructure.

2.1.2.3 The Continuum of AI-DPM Experimentation

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 24 of 55

Overall, the experimentation design aims to ensure that AI-DPM will be robustly prepared and
optimised for the full implementation with TEADAL's comprehensive runtime metadata. The
schematic representation of the steps composing the full AI-DPM experimentation is presented
in Figure 9.

FIGURE 9: AI-DPM EXPERIMENTATION SETUP

In the figure, the AI-DPM training and testing layer is plotted, representing four progressive
improvements: PoC public, µBench (on local machine), VM_node (simulated double-node
experimentation environment), and TEADAL Data (real data from TEADAL Pilots in their final
topology). Data is managed primarily through Prometheus and Thanos in the metadata
management layer, except for the PoC experiment using public data (indicated by a broken
line). Classical AI and LLMs will be used for training, testing, and evaluating AI models for all
datasets, except the PoC experiment that used public data (labelled as classical AI in the PoC
data and +LLM for the others to indicate the argumentation of LLMs to classical AI models).

Throughout this process, starting from the PoC, multiple algorithms focused on anomaly
detection and predictive analysis on multiple sets of metrics are developed and tested. The
Large Language Models (LLMs) approach seamlessly adapts the AI classical approach to the
increasing specificity and complexity of the metadata.

Further experimentation advancement is achieved by incorporating data simulated on a
dedicated experimentation environment alongside µBench with microservices related to
TEADAL. At the far end of the metadata source continuum is TEADAL metadata, which
represents actual, domain-specific data lake metadata, the target for applying AI-DPM. This
structured experimental continuum enables the systematic development and enhancement of
AI-DPM, with each stage bringing increased relevance and complexity to its intended use
cases.

2.1.3 AI-DPM Next Steps

As we progress with successions of AI-DPM experimentations, the next steps involve setting
up a two-node cluster using virtual machines, with monitoring stacks connected to TEADAL-
like microservices initialised on µBench. The AI-DPM data collection and management

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 25 of 55

pipeline, using Prometheus and Thanos, will be implemented to store datasets from this
system. Additionally, anomalies will be injected, and stresses of resources will be applied to
generate ground truth labelled data for training, testing and evaluating the AI models.
Furthermore, LLMs will be incorporated into the stacks of classical AI models for comparative
analysis and benchmarking. These efforts aim to improve the AI-DPM system for more
efficient data lake management and monitoring within TEADAL.

2.2 TEADAL METADATA FOR ENERGY

When considering the energy efficiency or sustainability of data pipelines in general, we need
to be able to estimate the energy consumption and resulting emissions for a specific location.
For this, the performance measurements can be combined with metadata about execution
locations. Data sources such as Electricity Maps5 can be used to obtain current carbon
emissions based on data center location. This can be integrated into the current TEADAL
approach, as the data pipelines also need location information to ensure data access and
processing policies. Hence, combining performance measurements and estimations with
current carbon emissions and electricity prices enables the estimation of the execution cost for
a given pipeline, which we can consider when optimizing pipeline execution and placement.

It should be stated that energy considerations (as well as performance considerations) are an
optimization goal for that respect, while policy considerations (e.g. country limitation on data)
are hard constraints that should be respected in any placement solution.

To make node location information accessible to energy optimization algorithms in a federated
environment, we will leverage Advocate. Advocate, presented in Figure 10, is a novel agent-
based system designed to generate attested evidence for applications in the cloud-based
federated environment of TEADAL.

FIGURE 10: SMART CONTRACT INITIALIZATION AND CONNECTION BY ADVOCATE

5 https://static.electricitymaps.com/api/docs/index.html

https://static.electricitymaps.com/api/docs/index.html

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 26 of 55

By integrating with existing infrastructure tools, such as Kubernetes and observability services,
Advocate captures, authenticates, and stores evidence in a tamper-resistant manner using
blockchain technology. Advocate deploys a smart contract on the federation’s blockchain, to
store generated evidence by smart contract which are about events that are published by the
smart contract including evidence related to membership management. These contracts are
initialized with a predefined set of federation members during the setup phase. By requiring
administrators to include node location data as part of smart contract initialization, we ensure
that infrastructure location metadata is embedded within the federation.

Node locations are also stored as claims tied to smart contract events within Advocate,
ensuring that location metadata is auditable and accessible. This setup enables optimization
algorithms to use the metadata for pipeline placement, aligning with the Electricity Map to
enhance energy efficiency.

2.3 MULTI-LOCATION CONTROL FLOWS IN TEADAL FEDERATION

In the previous deliverable of this work package, the preliminary control plane architecture was
presented for managing workloads in the TEADAL stretched data lake which is a data lake
consisting of datasets and data products belonging to a single organization deployed in several
different geographically distributed locations. In this stage of the project, control plane concepts
need to be extended to support TEADAL federation with multiple participating organizations,
each having its own stretched data lake deployed over multiple locations. As far as a single
organization’s stretched data lake is concerned, the focus was on storing datasets and on
hosting data processing pipelines with steps such as ingestion, curation, transformation, etc.,
up to the ready-to-be-shared FDPs. For a multi-organizational data lake, we are mostly
concerned with managing the access to FDPs which, according to the TEADAL architecture,
is implemented through a concept of sFDP, an additional data product created to serve the
needs of a specific data consumer inside the federation.

The introduction of the sFDP concept adds a layer of abstraction and control over how data is
shared and consumed between organizations, featuring the following key aspects:

 Decoupling Access to the data: an sFDP allows the data consumer organization to act as
a proxy or intermediary between its data users and the data products offered by data
provider organizations. This creates a layer of control for the data consumer organization,
enabling them to manage how the data is used internally without directly exposing users
to data providers’ FDPs.

 Further negotiation of access terms: although FDPs expose data according to policies
defined for them by the data provider, the ssFDP concept allow the data consumer and
the data provider organizations to negotiate additional specific terms, such as:

• Which subset of the dataset should be accessible by which users in the data
consumer organization.

• What transformations need to be applied (e.g., anonymization, removing private
fields) and what are infrastructure restrictions and requirements for applying them
(e.g., data should only be stored on compliant media and in certain locations).

• What limits should be imposed on data usage (e.g., rate-limiting, allowed operations)
for this specific provider-consumer contract.

 Flexibility in sFDP creation: an sFDP can be created by a developer from a data consumer
organization, by a developer from the data provider organization, or by a third-party

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 27 of 55

developer, with no restrictions; in addition, there are opportunities for automatic
generation of the sFDP code.

 Additional optimization opportunities: in addition to transformation steps mandated by the
sFDP contract, the sFDP pipeline can include additional steps, such as transforming,
compressing, filtering, aggregating, or caching, to further refine or optimize the dataset or
the overall system performance.

With all the beneficial features, the sFDP concept, together with the extension of the stretched
data lake to become multi-organizational or federated, have raised new challenges and
considerations for implementing the control plane. For example, deployment of the sFDP data
pipeline allows for more flexibility and, at the same time, is subject to more restrictions than
the FDP data pipeline which is typically confined to its organization’s boundaries. The sFDP
pipeline can be deployed partially in the data provider locations, partially in the data consumer
locations, or in the locations of other federation members. In addition to being the deployment
and runtime data sharing platform, TEADAL aims to be a platform for developing data products
and the related data processing and data sharing pipelines. This adds additional requirements
to the control plane, mostly in the areas of access control for developers (trust plane) and the
integration with the development platforms (GitOps).

To be able to deploy FDP pipelines in a stretched data lake potentially containing several
TEADAL Nodes (each running in Kubernetes cluster), D4.1 [4] has evaluated the use of the
Kubestellar project for unified workload management across clusters. Although this approach
could be possibly extended to support a TEADAL federation with multiple stretched data lakes
belonging to different organizations, we have decided to re-open this decision and evaluate
additional options. In what follows, we present the technology candidates for managing
workloads over a multi-cluster multi-organizational infrastructure and describe their pros and
cons. The decision regarding what mechanism will be selected for integration as part of
TEADAL pilots will be obtained after additional planned research and experimentation and will
be reported in the final deliverable of the work package, D4.3.

2.3.1 Open-Source Software for Multi-cluster Management

To deploy TEADAL services, in particular the FDP and the sFDP pipelines, across multiple
Kubernetes clusters, we need tools to allow a group of clusters managed by different
organizations to work together in a coherent manner. There are multiple such tools, typically
referred to as federation or multi-cluster management tools. For example, KubeFed [28]
(Kubernetes Federation) is probably the earliest of systems proposed for managing multiple
Kubernetes clusters as if they were a single entity. Since its first inception in 2018 as KubeFed
v1 that allowed deploying k8s services over a set of clusters, it has evolved into KubeFed v2
that can handle multiple types of shared resources and is still a viable option for managing
multi-cluster environments, although the project was officially sunset by the Multicluster
Special Interest Group in 2022. Multiple other options, both commercial and open, have
emerged offering different solutions with different set of features. Here we examine some of
the currently existing solutions for their applicability to TEADAL needs.

2.3.1.1 Solutions for Kubernetes Cluster Federation

The first group of solutions roughly follows the direction of KubeFed and offer cluster federation
in one way or another. Note that in this section we speak of federating k8s clusters which is
different from the notion of TEADAL Federation that federates organizations willing to share IT
resources and data between them. In Kubernetes, cluster federation enables the loose
coupling of multiple independent Kubernetes clusters, making it possible to aggregate the
resources and services of multiple clusters into a single, logical entity while keeping each
cluster isolated and independent. Most cluster federation solutions are architected with a
designated host cluster that manages deployments and propagates changes to a set of

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 28 of 55

participating clusters; an interface, be it an API, a CLI, or sometimes a GUI, allowing operators
to issue commands across the whole federation; and a set configurations that describe the
participating clusters and the resources shared among them and provide baseline parameters
for arranging cross cluster communications, such as access controls, network access, etc.

The most cited benefits of cluster federation solutions are:

 Single pane of glass for managing state and configuration across clusters

 Cross-cluster discovery: cluster federation solutions typically take care of configuring
cross cluster communications, e.g., through load balancers and DNS entries

 Resource syncing across clusters: most solutions offer synchronization of state between
clusters which is very useful when it is needed to maintain the same deployment across
multiple clusters

At the same time, cluster federation solutions often have the following drawbacks:

 Higher network bandwidth and associated costs: typically, the control plane component
deployed in the host cluster monitors all clusters to ensure they maintain the expected
current state. This can be especially significant for a large number of clusters installed in
multiple locations with non-uniform network availability and capacity.

 Relying on a centralized control plane component can limit cluster independence and
cause problems as the control plane in the host cluster experiences faults.

Here we describe some of the solutions under this type:

 KubeFed, is a tool for coordinating the configuration of multiple clusters in Kubernetes
allowing users to determine which clusters KubeFed will manage, and what their
configuration looks like, all from a single group of APIs in the hosting cluster. Users
manage Kubernetes resources across multiple clusters using federated types such as
FederatedDeployment, FederatedReplicaSet, FederatedSecret, etc. KubeFed system
synchronizes these federated objects’ state across clusters using push-based
model. Even if discontinued, it is still employed in operations and integrated with many
modern open-source tools [29][30].

 Open Cluster Management (OCM) [31] is a framework to orchestrate Kubernetes
functionalities across multiple clusters and cloud providers. This includes built-in
functionalities, such as cluster inventory and workload placement and allows extensions
to orchestrate any possible Kubernetes-compatible objects and behaviours, such as
governance and observability. This modularity and extensibility make OCM popular as a
basis for other multi-cluster solutions that create additional capabilities on top of it, e.g.
Kubestellar. Also, OCM ccollaborates with popular Kubernetes ecosystem projects, in
particular ArgoCD and Istio, easing their application over multiple clusters.

 KubeAdmiral [34][35] is a multi-cluster management system for Kubernetes, developed
from KubeFed v2. It extends the KubeFed v2 API, providing compatibility with the
Kubernetes native API and more powerful resource management capabilities.

 Karmada (Kubernetes Armada) [32] is a Kubernetes management system for running
cloud-native applications across multiple Kubernetes clusters and clouds, offering turnkey
automation for multi-cluster application management in multi-cloud and hybrid cloud
scenarios. Kamada features clean integration with ArgoCD and supports both push and
pull cluster management modes.

 Admiralty (formerly multicluster-scheduler) [33] is a system of Kubernetes controllers that
intelligently schedules workloads across clusters. It is simple to use and simple to
integrate with other tools. Admiralty integrates with Kubernetes at the pod level and uses
standard Kubernetes API resources, like Deployments to globalize micro-services, or

https://karmada.io/docs/userguide/clustermanager/cluster-registration
https://karmada.io/docs/userguide/clustermanager/cluster-registration

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 29 of 55

Jobs to spread batch workloads, even third-party custom resources. Admiralty supports
centralized and decentralized cluster topologies, within and across trust domains.

 KubeStellar [36] is a flexible solution for challenges associated with multi-cluster
configuration management for edge, multi-cloud, and hybrid cloud. KubeStellar was
incepted in IBM research and was accepted to CNCF on December 19, 2023 at the
Sandbox maturity level. Kubestellar is designed to centrally apply Kubernetes resources
for selective deployment across multiple clusters; to use standard Kubernetes-native
deployment tools, in particular kubectl, Kustomize, and ArgoCD; and to make
disconnected cluster operation possible. All these features contributed to us selecting
Kubestellar for the initial TEADAL control plane implementation. Since then, the project
went through major re-architecture, to cater to the enterprise grade goals of supporting
high diversity between participating clusters [37]. This made Kubestellar more modular
and extensible on the one hand, while on the other hand, the project is now more
heavyweight and might be too opinionated for a research project such as TEADAL.
Kubestellar is now based on OCM and KubeFlex projects.

2.3.1.2 Solutions for Distributed Management of Multiple Kubernetes Cluster

Cluster federation solutions are suitable the TEADAL control plane as they can allow us to
deploy FDP and sFDP pipelines across clusters, to apply policies, and to handle
communication between clusters. On the other hand, this solution can incur high computational
and network overheads and might be difficult to integrate with custom TEADAL features such
as TEADAL catalogue and metadata, Trust Plane, etc. Here, we consider possible alternatives
to the full stack cluster federation solutions presented in 2.2.1.1 that might be simpler to adopt
and to customize for the needs of the TEDAL project and its specific pilot use cases.

 OCM [31]. First, we can directly use the Open Cluster Management (OCM) [31] and not
more complex solutions created on top of it such as Kubestellar. On the one hand, we
might need to rewrite some of the functionality, while on the other hand, we will have more
flexibility on deciding how to specify and manage TEADAL specific objects and processes,
such as data products, data pipelines, policies, GitOps, and trust management.

 Cluster API (CAPI) [38]. Cluster API is a Kubernetes sub-project focused on providing
declarative APIs and tooling to simplify provisioning, upgrading, and operating multiple
Kubernetes clusters. Cluster API was initially developed by the Kubernetes Special
Interest Group (SIG) Cluster Lifecycle, to allow management of k8s infrastructure in a way
k8s is used to manage cloud-native workloads and is now a Kubernetes sub-project. While
originally created for managing the infrastructure in an infrastructure-as-code way, CAPI
is capable of bootstrapping workloads across multiple clusters through integration with
GitOps tools such as ArgoCD [39]. This makes CAPI an eligible candidate for TEADAL,
at least for some pilots, e.g. where one organization is responsible for the TEADAL
Federation infrastructure and offers TEADAL services to its clients.

 GitOps-based Deployment with ArgoCD. Argo CD is a popular GitOps tool for managing
Kubernetes deployments. It is already used in TEADAL to streamline the deployment of
TEADAL Nodes on k8s clusters and this usage can be extended to the deployment and
versioning of FDP and sFDP pipelines across the TEADAL Federation. In certain
configurations, ArgoCD can synchronize deployments across multiple clusters.
Integrating with TEADAL Node repositories in GitLab, it can allow managing both the
infrastructure and the data pipeline configurations in a version-controlled, declarative
manner.

2.3.1.3 An outline for a GitOps based Federation Management Solution

Here, we briefly outline the emerging idea to base the TEADAL orchestration as much as
possible on GitOps, to allow for declarative management of infrastructure, workloads, and

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 30 of 55

configurations at all levels of the TEADAL stack. This is an initial outline, to be experimented
with in the last project period and to be fully described, if accepted, in D4.3

The key new components of the solution are:

 Argo CD for GitOps-Based Deployment. TEADAL already employs ArgoCD to
automate the synchronization of Customize manifests between TEADAL Node clusters
and their backup repositories in GitLab. Each TEADAL Node has its own repository in
GitLab. This ArgoCD setup can be extended to install FDP and sFDP components through
pushing changes to their configuration manifests to the correct Kubernetes clusters.

 GitLab CI/CD (Actions and Scripts). GitLab CI/CD can automate workflows, such as
managing infrastructure, and handling configuration changes. For TEADAL, this can be
used to ensure deployment of the FDP and sFDP components to the correct TEADAL
Nodes. When changes occur, e.g. new FDP or sFDP configurations are pushed to the
special GitLab repository, GitLab pipelines can trigger actions like creating or updating the
related manifests, applying configurations, or rolling out changes across multiple clusters
by pushing these manifests to the correct clusters. Depending on use case, this special.
GitLab repository can be designed to backup specific TEADAL pipelines (a repository per
pipeline instance) or TEADAL organizations (a repository per organization to back up all
the workloads running on its behalf), or the whole TEADAL Federation (a single repository
to store all the configuration of this federation). In addition, GitLab actions can automate
cluster registration, service account creation, and even manage Kubernetes infrastructure
with help of other tools such as CAPI.

In addition, the solution will require integration with TEADAL Catalogue and existence of a
component to make placement decisions that map policy requirements for running certain
pipeline components to the most suitable TEADAL Clusters and can rely on workflow engines,
e.g. Argo Workflows [40], for deploying complex multi-step pipelines.

Here one possible way this solution will work for sFDP deployment:

 Each time new sFDP deployment artifacts are created, these assets, in particular the
pipeline deployment specification with all the metadata and policy labels, are pushed to
the special GitLab repository responsible for that pipeline, organization, or federation,
depending on use case, as described above.

 A GitLab action will be triggered to invoke the placement decision service or script that
will produce a deployment specification complete with mapping of the pipeline
components to TEADAL Nodes. This service or script will have to rely both on the pipeline
specification received from step 1 and on the infrastructure data, such as inventory
information about clusters and their performance status.

 When deployment manifests are ready, GitLab action will continue the process and push
the manifests to the GitLab repositories that back up their corresponding TEADAL Nodes.

 ArgoCD assigned to the TEADAL Nodes will notice configuration changes in the
repository and will roll-up the corresponding changes to its cluster.

2.3.2 Updated TEADAL Data Pipelines

In this section we describe how TEADAL the Control Plane takes care of deploying the complex
multi-component data pipelines as part of the stretched data lake. In the initial design described
in D4.1 [4], this capability was based on two interdependent components, a Stretched Data
Lake Compiler and a Stretched Pipeline Executor. The purpose of a Stretched Data Lake
Compiler was to generate workload deployment decisions based on what data pipelines need
to be installed and what are their runtime requirements. The purpose of a Stretched Pipeline
Executor is to realize the workload deployment decisions generated by a Stretched Data Lake

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 31 of 55

Compiler so that all the required components are deployed and available according to the
requirements dictated by the Data Governance and by the Trust Management planes.

In the first project iteration, an IBM Research asset named Multi-cloud Computer Compiler or
MCC-C, was used for a proof-of-concept (PoC) implementation of the TEADAL Stretched Data
Lake Compiler. A custom version of MCC-C used for this initial PoC was contributed to the
project and is now hosted in the TEADAL GitLab organization in a stretched-data-lake-
compiler6 repository. As the initial prototype for a Stretched Pipeline Executor, an open-source
project Kubestellar created to manage workloads over multiple k8s clusters while itself being
based on k8s, was used. This initial TEADAL data pipelines PoC has demonstrated the
capability to orchestrate an FDP creation pipelines, for example the pipeline shown in Figure
11, as well as an sFDP creation pipelines, for example the pipeline shown in Figure 12, as part
of the first period review.

FIGURE 11: EXAMPLE OF A TEADAL PIPELINE FOR CREATING AN FDP

FIGURE 12: EXAMPLE OF A TEADAL PIPELINE FOR CREATING AN SFDP

The Stretched Data Lake Compiler optimizes workload placement based on data pipeline
specifications that contain references to input datasets as well as the task deployment
characteristics, both generic, such as input-output ratio, location constraints, hardware
requirements, and TEADAL-specific, such as constraints computed by Data Governance and
Trust Management planes. In addition to data pipeline specifications, the Stretched Data Lake
Compiler needs infrastructure inventory information, annotated with properties such as
compute and memory capacity, storage size, advanced hardware capabilities such as GPUs
or TEEs available at infrastructure nodes, etc. In the first iteration prototype, mainly the generic
annotations were used both for the data pipeline specification and for the infrastructure
capabilities specification. Generic tools such as IBM MCC-C for the Stretched Data Lake

6 https://gitlab.teadal.ubiwhere.com/teadal-tech/stretched-data-lake-compiler

https://gitlab.teadal.ubiwhere.com/teadal-tech/stretched-data-lake-compiler

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 32 of 55

Compiler and Kubestellar for the Stretched Pipeline Executor were sufficient to realize the
PoC. To summarize, the main outcome of the initial, first period, work, was to architect the
stretched data lake control as a combination of two compoments, a Stretched Data Lake
Compiler realized with the MCC-C and a Stretched Pipeline Executor planned to be realized
with Kubestellar.

In the second project iteration, the architectural approach of having two separate components,
the compiler for making placement decisions and executor, for actuating these decisions, was
preserved. During the second iteration, several important advances took place in the project
as a whole, both with respect to more detailed specification of the pilot requirements in WP2
and with respect to a progress achieved in the technical work packages. This resulted in the
updated understanding of the TEADAL Control Plane. The principal separation of duties
between the data pipeline optimization, prototyped as Stretched Data Lake Compiler, and the
data pipeline execution, prototyped as Stretched Pipeline Executor, remains the same. At the
same time, the functionalities and the realization mechanizms of these components were
refined. In the current deliverable, we mostly focus on the updated executor functionality
explained below.

2.3.3 Deploying Data Pipelines with GitOps

Data pipelines realize data-based computational transformations of the datasets, defined to
create task-specific data products, for further consumption by the federation, based on the
data governance as well on the security and trust rules and policies. From a technical
standpoint, data pipelines can be seen as sequences of computational steps to be performed
on specified data sources in a specified order. Although in the simplest cases, all the required
transformation steps can be executed as a single monolithic application instance, a more
modular approach is required for achieving an adequate balance between satisfying the
optimization goals and standing in data governance and security constraints. Thus, data
pipelines in TEADAL are multi-component applications with different components executed on
different infrastructure pieces based on optimization and governance decisions.

To enable uniform deployment over different infrastructures, such as cloud IaaS, on-prem data
centers and edge facilities, TEADAL Node architecture follows cloud-native principles and is
realized using Kubernetes (k8) technology. Hence, each TEADAL Node is a k8s cluster
extended with several layers of TEADAL services: 1) the Infrastructure Mesh services
responsible for interconnecting individual TEADAL Nodes into a uniform infrastructure; 2) the
TEADAL Core services responsible for enforcing data governance and trust policies, as well
as for control plane and pipeline creation functionalities; and 3) the TEADAL Product services,
such as REST endpoints of the federated and the shared data products that are available for
consumption by the end users. According to the k8s and the service mesh architectures, all
the software running on each specific TEADAL Node is controlled natively by the local k8s
control plane according to a declarative definition of the k8s objects stored as cluster
configuration in YAML files. TEADAL infrastructure is managed as code through the ArgoCD
based GitOps processes developed as part of WP6. According to these processes, each
TEADAL Node is backed up by its own git repository and is governed by its own ArgoCD
daemon that synchronizes the Node’s deployment state with the state declared by
configuration files in the git repo. During the second project period, this TEADAL GitOps
automation approach, based on ArgoCD and described in D6.2[7], was validated across the
project pilots and found capable of managing the infrastructure mesh, the core, and the product
services such as FDPs and sFDPs. It was decided to leverage the success of the created
GitOps processes and extend them to manage all the service deployments, with no need for
an additional deployment facility. This allows the GitOps automation to cover the functionality
of the Stretched Pipeline Executor, significantly simplifying the control plane, reducing the
number of deployed services and, thus, the resource and the energy requirements of the
TEADAL framework.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 33 of 55

To realize the GitOps based Stretched Pipeline Executor functionality, we have considered
several approaches, including GitLab automation, multi-cluster and multi-repo ArgoCD
practices, as well as terraform. After the initial evaluation, it was decided to continue the second
phase experimentation and deploy sFDP pipelines with GitOps as proposed in 2.3.1.3. For
this, we plan to create, in addition to a per-node git repository, a federation-level git repository
for each pilot. This repository will contain mostly configuration of the pilot federation
infrastructure and services, in cloud-native declarative form. Updates to this federation-level
repository will trigger updates to the per-node repositories and, as a result, the nodes backed
up by these repositories will be updated by their local ArgoCD daemons.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 34 of 55

3. ADVANCE TEADAL AUTOMATION

In this section we describe the novel AI-based techniques for automating the TEADAL data
handling and data sharing processes. This automation is proposed to reduce the complexity
of sharing the data, and to avoid, as much as possible, the need for manual steps, such as
developing custom software components, creating the configuration files, browsing through
metadata in the catalogue, or specifying the data products based on policies and rules
formulated by humans. These capabilities are new research that is introduced in the second
part of the project and will be demonstrated in a proof-of-concept capacity for the selected use
cases as part of TEADAL pilots.

The research is targeting two directions:

 The first is to reduce the complexity for the data consumer by providing tools to help
consuming the data in a simple way, without the need to use additional tools.

 The second is to simplify the development of the sFDP mechanism and to reduce the
effort that data producers need to invest in implementing the data sharing mechanism.

The foundation behind the automation is the availability of OpenAPI specifications [12] which
is a format standard for describing HTTP APIs such as the one used in TEADAL, and open-
source LLMs with function-calling[13][25] capability which is the ability of an LLM to associate
the content of a user request with a need to call an external tools, e.g., a function from a set of
available functions or a remote service, and to identify the correct set of parameters to pass to
the target function or service.

The technology at the core of the automation is implemented in the Generative AI integration
library (GIN) library. It leverages the foundation described above and adds enabling
technologies to realize a solution. The details are discussed in the next section.

3.1 GENERATIVE AI INTEGRATION (GIN) LIBRARY

The idea behind GIN library is to simplify the use of data and reduce the need for a priori
knowledge when developing data access code or performing data science, analytics, business
intelligence, and other data usage tasks. GIN library enables the user to avoid the need to
study the technical specification of the available data APIs, as well as the need to possess
programming skills necessary for using REST APIs.

GIN is a Python library that facilitates access to data and can be called either programmatically
or by using a command line interface. The library internal components are shown in Figure 13
and the interfaces to those components are listed below along with explaining the functionality
they implement:

1. An interface component to import, index and retrieve API.

2. Natural language to API call functionality including:

a. A translator component, to translate a natural language query such as “list the
shipments sent in October 2024”, “get shipments for customer with id 1234” into a
machine-readable specification (JSON) that can be easily transformed into a function
call or REST API call, also known as tool-calling.

b. A connector generator component, to generate the specification YAML (also called
data connector specification) describing the REST query to perform and how to
handle the output data.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 35 of 55

3. An interpreter component, to interpret the specification created by the generator
component, perform a REST call to the specified API endpoint, transform the API response
data to a request output format, and returns the output to the caller.

FIGURE 13: GIN LIBRARY COMPONENTS

GIN uses an LLM to translate an input query in a natural language to a function call or a REST
API. The LLM is trained to select a best fit function from a given list of functions and to assign
values to the function arguments from the input query. The LLM generates a JSON description
for the function name to call and value assignments to the function arguments. To assemble
the list of candidate functions GIN uses a pattern called Retrieval-Augmented Generation
(RAG) to identify the most relevant functions or REST APIs that are to the input query.

GIN builds a data access (connector) specification YAML from the LLM output. The YAML
describes the details of performing a REST API request and details on how to read and parse
the response and how to transform the response content into the desired output.

3.1.1 Using Retrieval-Augmented Generation for OpenAPI specifications

GIN uses the IBM granite-20b-functioncalling LLM [14][27] to identify the function to call and
to assign values to the function arguments. Such a function-calling LLM expects to receive an
input context that includes the input query and a list of functions to choose from. The LLM
generates an output that specifies what is the best fit function from the list that matches the
input query.

GIN is built to support choosing from a large set of functions and APIs. However, the LLM input
content is limited and needs to be as concise as possible and cannot include the full set of
possible functions that are available. For this purpose, we identify the set of relevant APIs and
only provide those to the LLM. This is known as Retrieval-Augmented Generation (RAG). In
GIN we apply the RAG pattern by retrieving the most relevant function calls from a Chroma
vector store [26].

Retrieval from a vector store is based on converting text into an embedding vector which is a
list of floating-point numbers. The embedding vector is generated using sentence transformers
which generates the embedding vector to represent the content of the input text. The distance
between two vectors measures their relatedness. Small distances suggest a high level of
relatedness and large distances suggest low level of relatedness.

GIN applies the RAG pattern by performing the following flow:

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 36 of 55

4. Load function calls / APIs into the vector store. GIN creates a text document that includes
the function name, description, the function argument and their description, type and
additional information that can help with matching an input query. This document is
converted to an embedding vector and stored in the vector store.

5. Convert the input query is converted to an embedding vector and used to search the vector
store. The closest (small distance) set of vectors are fetched from the vector store including
their metadata (i.e., the text document describing the function call).

6. Generate a list of function calls in the required format (described in the LLM documentation)
from the metadata retrieved by the search.

7. Call the function calling LLM with the input context to get back the candidate function to
call.

3.1.2 Function Calling LLM

The function calling LLM returns a JSON description of the function to call and the value
assignment to arguments. However, LLMs, by their probabilistic nature and training, are prone
to various types of issues when returning results, all the way from incorrectly selecting the
function to introducing “hallucination” (i.e., combining or mixing unrelated data together).

For this purpose, GIN adds a validation layer on top of the function calling LLM. The validation
layer adds checks for the LLM output. In this version, we introduce a layer of static checks on
the LLM output. The checks stem from the OpenAPI specification and from the Tool
Description, verifying the following:

1. The function name - the function selected by the LLM was included in the list of candidates.

2. The arguments – the arguments listed by the LLM are listed in the function call document.

3. The types – the values assigned by the LLM to arguments are correct according to the
function call document specification.

4. The required arguments – all the required arguments according to the function calling
document are included in the LLM output.

These sets of checks enable GIN to increase the confidence in the output of the LLM.

3.1.3 Data Transformations

The run-time engine that performs the REST API can transform the API response data and
shape it into a given format before producing the output to the user.

The export section in the connector specification defines for each output field (field after
transformation) the needed transformation functions to run on the API response fields to get
this output field. An example of how to describe transformations is available later in Figure 15.
For each output field that is provided, the functions in the list are executed in order. The name
of the function is taken from “function” and the function arguments (i.e., argument name and
value) are populated from the “params” section.

3.1.4 Using the GIN Library

Table 2 shows the methods expose by the GIN library, to be used either by the data consumer
or by the sFDP builder.

TABLE 2 : GIN LIBRARY METHODS

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 37 of 55

Method Name Method Decription

add_specs Import into the search database (a vector store database)
APIs described in an OpenAPI specification file to be
available for generating data access requests.

apply_tool_calling Generate a function call description from an input query and
a given list of function call candidates.

build_connector Builds data access connector specification from natural
language (in English) input query using the RAG pattern.
Selects candidate functions based on the input query and
generates a specification that describes how to access
the data source and what arguments (and values) are
needed to retrieve the requested data.

run Performs a data access specification request using a REST
engine that connects to a REST endpoint and retrieves the
requested data.

Later in this section, we describe a set of capabilities designed to assist data users such as
data scientists, data analysts, auditors, etc. The user persona depends on domain specific use
cases of the TEADAL pilots. For example, when a data scientist needs certain data for a
specific research, report, or model, the TEADAL framework aims to provide convenient
interfaces to discover the suitable source FDPs, to specify how the data, served by the source
FDPs, needs to be transformed and turned in an sFDP, and, finally, to access the data served
by the sFDP prepared specifically to be used for a data science task at hand.

3.1.5 GIN Data Access (Connector) Request description

GIN uses a YAML specification to describe a data access request. The build_connector

method builds the data access request, also called a connector by GIN, which describes how
to build a REST API call to the request data endpoint.

The specification, example is given in Figure 14, includes the following information:

1. Metadata (some is omitted from the figure) such as the input query, headers, versions, etc.

2. The server addresses.

3. Technical specification for the API(s) to call, including the API endpoint, the method type
(get, put, post), the arguments: for each argument it includes the name, the location (URL
parameter, header, data), the type and value assignment.

4. The output data that should be returned by the call, including the transformation that needs
to be performed.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 38 of 55

FIGURE 14: EXAMPLE DATA REQUEST (CONNECTOR) SPECIFICATION

In Figure 15 we show an example how to specify transformation in the YAML. It contains a
“Shipment” entry which is the output schema after transformations, and it has two fields, “year”
and “month”, for each field there is exactly one transformation function with the needed
parameters (the parameters are taken from the API output schema in the spec section).

FIGURE 15: EXAMPLE TRANSFORM SECTION IN THE SPECIFICATION

metadata:

inputPrompt: get shipment of customer with id 1113

servers:

 - url: http://localhost:8003/fdp-czech-plant/

spec:

 apiCalls:

 .getShipmentsByCustomer:

 arguments:

 - argLocation: parameter

 name: id

 type: string

 value: '1113'

 endpoint: /shipments/customer/{id}

method: get

 type: url

 output:

 data:

 .getShipmentsByCustomer:

 api: .getShipmentsByCustomer

"exports":

{

 "Shipment": {

 "dataframe": ".",

 "fields": {

 "year": [

 {

 "function": "map_field",

 "description": "map fields or change names from source to

target.",

 "params": {

 "source": "year",

 "target": "year"

 }

 }

],

 "month": [

 {

 "function": "filter_by_quarter",

 "description": "Filters a DataFrame to return rows where the

month falls within the specified quarter.",

 "params": {

 "month_col": "month",

 "quarter": 4

 }

 }

]

 }

 }

}

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 39 of 55

The GIN run method receives as input the data request specification YAML and performs the

REST API call described in the specification and applies the transformations defined in the
exports section to the API response data.

3.2 ASSISTING THE DATA CONSUMER

In this section, we describe a set of capabilities designed to assist data users such as data
scientists, data analysts, auditors, etc. The user persona depends on domain specific use
cases of the TEADAL pilots. For example, when a data scientist needs certain data for a
specific research, report, or model, the TEADAL framework aims to provide convenient human-
friendly interfaces and processes to find, select, and obtain datasets according to a natural
language description instead of requiring data scientists to browse through huge amount of
metadata that can involve lots of guesswork, frustration, and waste of time.

Two key complexities in the data user workflow toward working with data is (1) finding the data
source (API) that would provide the data, and (2) the technical skill to access the data, that is
writing code that would bring the data in the right form for processing. Leveraging GIN, a data
consumer is able to find and obtain data without the need for deep skills at finding data, or at
developing code to access data. In Figure 16 we show how GIN is used to assist the data
consumer.

FIGURE 16: USING GIN TO ASSIST THE DATA CONSUMER

The build_connector method in GIN maps between a user query, phrased in a natural

language (English), and data that is shared in TEADAL (through the use of TEADAL sFDP).
Based on the content of the user query, the method finds an API call that is a best fit for the
information provided in the query. More so, it also generates an assignment to any
arguments/parameters that needs to be included in the API call to return the request
information that was specified in the query.

The output of the build_connector method is a specification (in JSON) that describes how

to call the API, and what information is retrieved from the API. See details in Section 3.1.4.

The run method in GIN takes the above specification, that describes how to instantiate a user

query and executes the API call to retrieve the data based on the specification. It returns either
a JSON or a Pandas dataframe that includes the retrieved data. It also has the option to
produce a JSON file that can be further processed.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 40 of 55

The add_specs method imports a set of APIs described in an OpenAPI specification file into

a vector store, which is used for searching and matching a natural language query text with
and API.

3.2.1 Consuming data from sFDP using GIN

Here we show an example of how one can use the sFDP OpenAPI specification with GIN to
simplify the access to TEADAL sFDP. The example is composed of two Python notebooks,
one that loads descriptions of APIs from the provided OpenAPI specifications into a vector
store, and the second that generates and performs an API call based on a user query. The
Python notebook shows how one can consume data from TEADAL sFDP without the need for
a deep knowledge of the sFDP APIs.

The notebooks are part of the repository that holds data consumer tools. Table 3 depicts the
repository location and the available notebooks.

TABLE 3 : SAMPLE NOTEBOOKS FOR DATA CONSUMERS

Repository https://gitlab.teadal.ubiwhere.com/teadal-tech/sfdp_consumer_tools

Notebooks

load_vs_sample_notebook.ipynb Load OpenAPI specification
into the vector store

data_access_sample_notebook.ipynb Generate and execute the data
access request

The data access notebook in Figure 17 shows how to access the sFDP that holds shipments
data (based on use case pilot 4 – industry 4.0). The notebook details how to create a data
access request by providing an English query asking for shipments for a given customer that
retrieves the data and returns it as a JSON document. Note that by using the library the data
user does not need to specify exact arguments to the API, but rather the library creates the
mapping between the text the data user provides and the API parameters that needs to be
passed to execute the query. The output JSON document can be used for further analysis.

FIGURE 17: CODE EXTRACT FOR GENERATING AND RUNNING A DATA REQUEST

Prior to running the generating and performing data requests we need to have the APIs
included into a vector store to enable searching and matching with the English queries. This

from gin.gen import config

from gin.gen.agents import build_connector

from gin.gen.executor import exec

from gin.common.logging import Logging

…

query = "get shipments for a customer with id 1113"

…

build_connector.generate(config_file,

 None,

 connector_file,

 query)

out = exec.run_from_spec_file(connector_file)

pprint.pprint(out)

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 41 of 55

action needs to be run once as the vector store that keeps the APIs is persistent and can be
used for any additional runs. Figure 18 shows a code extract that describes how to load APIs
for two of TEADAL uses, the mobility use-case and the industry 4.0 use-case.

FIGURE 18: CODE EXTRACT FOR LOADING APIS INTO THE VECTOR STORE

3.3 ASSISTING THE SFDP BUILDER

The set of capabilities described in this section is designed to assist the participants of TEADAL
federation that need to create deployment artifacts required to serve the data as TEADAL
sFDPs. In the initial project phases, it was assumed that the TEADAL federation fully depends
on dedicated development teams assigned for this task. The developers can be part of the
data producer, data consumer, or federation provider organization. In the current project
iteration, we advance our thinking to support, in addition to allowing sFDP creation by
traditional software teams, allowing automatic sFDP generation by generative AI using LLMs.

In this section, we introduce the Automatic sFDP generation (ASG) tool that enables a sFDP
developer to create a REST API server without writing computer code, but rather with providing
ASG specification that describe the role of the sFDP including transformations that needs to
be performed in order to uphold the contract between the data producer and data consumer.

3.3.1 Generating the Open API Specification for sFDP

The ASG specification describes the function of the sFDP. It describes which REST endpoints
needs to be available, the REST endpoint of the FDP that provides the data for this sFDP, the
response schema that should be included in the API response and the description how to
generate the sFDP response based on the data received from the FDP.

In Figure 19 we see an example of ASG specification. The specification states that the sFDP
should have an endpoint /stop_id/{stop_id} and it should return a JSON text that

includes two fields, a stop_ID field, which is an integer and is populated from stop_id in the

source FDP, and a stop_full_name field which is a string and is populated by concatenating

stop_name and parent_station from the source FDP.

The description entry for each field in the schema describes how to populate the data in the
sFDP, the description is used as input query to call GIN tool calling method together with the
available library of functions and the FDP response schema in order to select which
transformation to use, and which arguments it needs to provide the response data.

from gin.gen import config

from gin.gen.retrieval import vectorstore_loader

specs_files = ["./openapi-specs/fdp-amts-gtfs-static.yaml", "./openapi-

specs/fdp-czech-plant.yaml"]

vectorstore_loader.add_specs(conf, specs_files

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 42 of 55

FIGURE 19: SAMPLE ASG SPECIFICATION BASED ON THE MOBILITY USE-CASE

3.3.2 Generating the sFDP API Endpoint

The ASG tool generates an sFDP server which is implemented as a FastAPI application from
the ASG specification and the OpenAPI specification of the source FDP. The tool also includes
a set of predefined transformation functions (tools) that is available to be used in the sFDP
server.

The ASG tool can be used when a new contract is added to the catalogue, for example, by the
sFDP developer who invokes the tool with two inputs:

1. The ASG specification file which defines the sFDP endpoints based on the contract. For
each endpoint, the developer provides the FDP endpoints used and the transformations of
the data in natural language.

2. The OpenAPI specification of the source FDP.

The ASG tool creates Python code for a FastAPI application, implementing the endpoints
defined in the ASG specification with the needed transformations on the data retrieved from
the FDP.

Alternatively, the process of generating the FastAPI application can be invoked automatically
upon creation of a new contract or on other triggers, such as modification of the existing
contract or of the source FDP API.

The ASG tool is a Python based tool that uses the following components:

1. FastAPI framework to implement a REST server.

2. Jinja2 templates to automatically generate the FastAPI server application code.

3. GIN tool calling to infer needed transformations and the sFDP response schema and data.

4. GIN Execution engine to retrieve the data from the FDP and transform the data before
sending to the consumer.

In Figure 20 we describe the flow of creating a sFDP (depicted as flow 1) and the execution
time of the FastAPI application (depicted as flow 2).

sfdp_endpoints:

 - stops_endpoint:

 fdp_path: /stops/stop_id/{stop_id}

 sfdp_path: /stop_id/{stop_id}

 schema:

 Stop:

 type: object

 properties:

 stop_ID:

 type: integer

 example: 101

 description: "map stop_id"

 stop_full_name:

 type: string

 example: Martiri LibertĂ SaittaMarshall

 description: "Concatenated stop_name with

parent_station for this stop"

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 43 of 55

ASG creates the sFDP FastAPI application (flow 1) as follows:

4. For each endpoint in the ASG specification:

a. For each property defined in the schema

i. Run create_spec_section() to parse the FDP OpenAPI specification and

create a data access request specification section to retrieve data from the
FDP.

ii. Run add_export_section() to use the GIN tool calling to translate the field

description written in natural language (English) to one of the transformations
available in ASG, and generate the export section in the GIN data request
specification which describes the transformation to run.

FIGURE 20: THE AUTOMATIC SFDP GENERATION TOOL

When the FastAPI application endpoint is called (flow 2), it uses the GIN execution engine
using the GIN method exec.run_from_spec_string() to execute the specification that

was generated by the ASG tool in order to retrieve the data from the FDP, transform it, and
return in to the sFDP data consumer.

TABLE 4 : ASG REPOSITORY AND MODULE

Repository https://gitlab.teadal.ubiwhere.com/teadal-tech/asg_generation_code

ASG
Module

fast_api_from_spec/generate_app_from_spec.py Generate sFDP server

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 44 of 55

An example with details how to run ASG to generate the sFDP server are detailed in Figure
21.

FIGURE 21: PYTHON CODE FOR RUNNING AN ASG TOOL

3.3.3 Generating the sFDP Transformation Pipeline

The ASG tool supports a library of transformations that are provided as Python functions. The
library is created in advance with generic data transformations and can be easily expanded by
adding additional functions into the library to support use-case specific transformations.

python generate_app_from_spec.py -spec .\openapi-specs\fdp-czech-

plant.yaml -i .\transform\shipments-instructions.yaml -fdp_server

http://fdp-server-address/

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 45 of 55

4. ADVANCE CONTROL PLANE FEATURES AND SERVICES

In this section we summarize the control plane related features, considerations, and services
brought up and developed as part of the second project period or updated since the initial
design created in the first reporting period of the project. The topics discussed here are broadly
subdivided into topics related to security, privacy, and compliance in Subsection 4.1 and topics
related to performance and efficiency covered in Subsection 4.2.

4.1 SECURITY, PRIVACY AND COMPLIANCE

Security, privacy and compliance are features of the utmost importance for a data sharing
platform such as TEADAL. Even inside a single organization, data collection, storage, and
processing require to conform to policies and regulations related to ensuring the data is treated
according to organizational and government rules and distributed only to authorised people
and destination. To share data between multiple organizations even more care is required and
there is often an additional complexity of bridging between different technologies and tools
used by different organizations. In TEADAL, these aspects are researched as part of WP5.
Here we describe how security, privacy and compliance assets conceived in WP5 are
integrated into the TEADAL control plane to facilitate cross organizational and cross-location
data sharing.

4.1.1 Authorization

This subsection describes the authorization mechanisms between the data consumer and the
data product as it currently stands. In the first project period, the focus was mostly on FDP
creation and access described in detail in D4.1[4].

During the second reporting period, the approach was generalized to suit both the FDP and
the SFDP data products. The diagram in Figure 22 illustrates the conceptual security
components and actors as well as their relationships involved in accessing TEADAL Data
Products, both FDPs and sFDPs. Blue lines show data product creation and orange lines show
data product access flows. The flows presented in Figure 22 are:

1. Data consumer makes a request to a data product, either FDP or sFDP.

2. The request is intercepted by an in-network proxy implemented as an Istio sidecar installed
in TEADAL Nodes.

3. In-network interception proxy forwards request details to the policy enforcement point.

4. The policy enforcement point invokes the relevant policy decision service.

5. The policy decision service looks up the actual policies related to the request from the
policy store. Note here that dynamic changes to policies will be adequately supported as
part of this design.

6. Based on policy look up, the policy decision service decides whether the request is
legitimate or not and informs the policy decision point on this decision.

7. The policy enforcement service commands the in-network interception proxy to forward the
allowed requests to the target data product service and to halt the disallowed requests. In
both cases, the decision is recorded to the audit log to support compliance requirements
and to the network log to help debugging.

The interception proxy forwards the allowed requests and then sends the reply to the data
consumer. For denied requests, the proxy can generate an explanatory reject message or can
just halt the transaction, depending on how the system is set up.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 46 of 55

FIGURE 22: TEADAL DATA PRODUCT CREATION AND ACCESS FLOWS

The components currently implemented are:

Istio: Message interception facility is installed and configured in all the TEADAL Nodes. Istio's
Envoy proxies intercept each consumer request and data product service response.
External Authorization Filter (Envoy): Envoy filter executed before forwarding consumer
requests to a data product service. It acts as a policy enforcement point, connecting to an
external policy decision point to determine whether to allow or deny data product service
requests.
Open Policy Agent (OPA): A policy enforcement language, Rego, and versatile runtime for
evaluating Rego policies both interactively and in server mode as well as testing Rego code
and assembling it into binary, digitally signed "bundles" which can be downloaded and
evaluated by the OPA server.
OPA Envoy Plug-in: Policy decision point. It embeds the OPA server runtime and interfaces
with the External Authorization Filter. It downloads Rego policy bundles from an HTTP policy
store.
Policy Store: Nginx application to create, sign and make available Rego policy bundles.
RBAC framework: Machinery to implement role-based access control for RESTful services,
while still leaving policy writers the freedom to extend the base framework with service-specific
functionality. It can be used with any Identity Management service compliant with the OpenID
Connect (OIDC).
Keycloak: OIDC-compliant Identity Management service. Consumer services act on behalf of
users who have proved their identity through Keycloak.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 47 of 55

At the time of writing, the message interception, access control delegation, OPA decision point
and RBAC framework are in a functioning state.

The Nginx policy store has been partially implemented, where OPA can refer to it as a source
for policies, and dynamically pull Policy Bundles from it. If the bundles are updated in the store,
OPA will automatically pull them anew. If the bundles are signed, the signature can be verified
by OPA as well, provided it is properly configured.

All policies are implemented using OPA’s Rego language, with the RBAC (Role-Based Access
Control) framework serving as the foundation for them. The framework is written to provide the
base functionality to check requests towards RESTful APIs, verifying the JSON Web Tokens
(JWTs) issued by Keycloak. In the previous iteration (D4.1 [4]), policy evaluations considered
only roles, which were retrieved from Keycloak. Now, however, groups are also referenced
and utilized for authentication, allowing requests to be approved based on both the roles
associated with a user’s identity and the groups they belong to in Keycloak. OIDC claims are
now also supported in JWT evaluations.

In D4.1 [4] the possibility of using other policy evaluation solutions was discussed, such as
Datalog. Ultimately, given the challenges of translating Datalog into usable access policy, and
general inadequacy of Datalog for the purpose of the framework, OPA and Rego were
ultimately selected for the authorisation solution presented here.

What is currently missing is a way to create Policy Bundles in a more structured and organized
manner. A solution for this is being worked on, that involves providing an interface for manually
creating policies for OPA, bundle them, and store them in the Policy Store, ready to be made
available to OPA for evaluation. The plan is to have it functional and ready for a final project
reporting for D4.3.

4.1.2 Orchestrating Privacy-Preserving Data Pipelines

To fully materialize the concept of Privacy-Preserving Data Pipelines introduced in D5.2 [6],
we needed to make architectural decisions regarding workflow engines for executing data
processing pipelines. After evaluating both Argo Workflows [40] and Kubeflow [41], we decided
to proceed with Argo Workflows due to its flexibility and ease of integration with our existing
infrastructure. Argo Workflows is an open-source container-native workflow engine designed
for orchestrating parallel jobs on Kubernetes. It allows users to define workflows using simple,
declarative YAML specifications. Integrating with Kubernetes, Argo Workflows can schedule
and manage complex graph-like workflows, making it a valid choice for specifying and
orchestrating data pipelines that require reliable, scalable, and programmable execution.

Argo Workflows can interplay with confidential computing mechanisms, for instance, provided
by TEEs. As discussed in D5.2 [6], we evaluated different technologies for provisioning TEEs
in Kubernetes, including KubeVirt7 and Kata Containers8 with Confidential Containers9. We
decided to proceed with the Kata Containers and Confidential Containers approach due to its
maturity and easier integration with the TEADAL architecture. Kata Containers provide
lightweight virtual machines that are perceived and function like containers but offer the

7 https://github.com/kubevirt
8 https://github.com/kata-containers
9 https://github.com/confidential-containers

https://github.com/kubevirt
https://github.com/kata-containers
https://github.com/confidential-containers

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 48 of 55

workload isolation and security advantages of regular VMs. When combined with Confidential
Containers, they enable the execution of containerized workloads within protected VMs,
leveraging various TEE hardware platforms. To use Kata Containers for TEE-based tasks, one
can specify a runtime class as follows, part of an Argo Workflow pipeline specification in YAML
like the one presented in Figure 23

FIGURE 23: ARGO WORKFLOW SPECIFICATION YAML

Here, kata-qemu-tdx is a runtime class that uses Kata Containers with the Intel TDX (Trust

Domain Extensions) for hardware-based isolation, to ensure that this specific task runs in a
secure enclave. KubeVirt was also considered, however, it operates differently from Kata
Containers. KubeVirt extends Kubernetes by adding virtual machine resource types through
Custom Resource Definitions (CRDs), allowing VMs to run alongside containers in a
Kubernetes cluster. Kata Containers provide lightweight, isolated execution environment
requiring minimal code changes, while KubeVirt extends the Kubernetes API for full VM
management. Given our need for a simple hardware-based isolation of a single task within a
pipeline, Kata emerged as the more suitable solution. KubeVirt's broader scope and deeper
integration would have been unnecessarily complex for TEADAL’s specific use cases.

FIGURE 24: ARGO WORKFLOW PIPELINE EXAMPLE

Using the Kata Containers runtime class in Argo Workflows allows us to programmatically
specify what specific and sensitive tasks in broader data pipelines should be executed within
a TEE, maintaining its confidentiality throughout the processing pipeline, even when operating
in potentially untrusted environments. Figure 24 presents an example of an Argo Workflow
definition for a pipeline containing one TEE-based task (on the left), along with the visualization
of this pipeline execution (on the right). D5.2 [6] further details the architectural components of
Kata and Confidential Containers, running a VM-based TEE task setup. Building upon this

- name: confidential-task
 template: tee-template
 ...
 - name: confidential-task
 podSpecPatch: ‘{“runtimeClassName”: “kata-qemu-tdx”}’

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 49 of 55

implementation of Privacy-Preserving Data Pipelines, careful consideration must be given to
the flow of data between regular and TEE-protected tasks. When data transitions into a TEE-
protected task, it needs to be encrypted and securely transferred into the TEE, where it should
remain encrypted in memory, only decrypted for processing. Results must be encrypted before
leaving the TEE, ensuring data protection throughout the pipeline. The isolation provided by
Kata Containers should enforce security boundaries between regular and TEE tasks, with each
TEE task running in its own lightweight VM to prevent unauthorized access. To verify the
integrity of TEE environments, a remote attestation process is necessary. When a TEE task
initiates, it should perform a local attestation, generating evidence of its secure state. This
evidence then needs to be verified by a trusted service within the pipeline or an external
attestation service. Argo Workflows should integrate this attestation process, or its event
sourcing, ensuring that sensitive data only flows into verified secure environments, thus
maintaining the pipeline's trust model and ordered process execution.

As demonstrated in D5.2 [6] 's final section, this architecture can be applied to several TEADAL
pilots, as well as other use cases, for example, continuous integration pipelines, part of
TrustOps processes. In the former financial pilot use case prototype, for instance, sensitive
data from Turkish citizens was demonstrated to be processed in TEEs hosted in the
Netherlands, enabling cross-border data analysis while complying with data locality
requirements. The TEE environment should undergo attestation by Turkish authorities before
data transfer and processing occur within the secure enclave, allowing for secure aggregation
and analysis of financial data across jurisdictions without compromising individual privacy or
violating data protection regulations. In D3.2 [5], new possibilities for optimizing resource
utilization and energy consumption without compromising data privacy are also detailed. To
generalize and relate to the rest of this deliverable, this architecture is then relevant for
processing FDPs and sFDPs within TEADAL. When creating or consuming sFDPs, which may
involve sensitive data transformations agreed upon in data sharing contracts, this pipeline
architecture can help ensure that these transformations occur within TEE-protected tasks. For
instance, when an FDP is being transformed into an sFDP based on a specific data sharing
agreement, a set of transformation logic can be encapsulated within a set of TEE tasks in a
pipeline orchestrated by Argo Workflows. This ensures that the original FDP data remains
confidential and that the agreed-upon transformations are performed in a verifiable, secure
environment before the resulting sFDP is made available to the consumer. The attestation
process becomes especially important in this context, as it provides assurance to both the FDP
provider and the sFDP consumer that the agreed-upon transformations were executed
correctly and securely.

The flexible nature of this pipeline architecture allows for optimized placement of FDP and
sFDP processing tasks across the federated data lake infrastructure. Leveraging Kubernetes'
capabilities in conjunction with TEE-enabled tasks, we can achieve a balance between data
locality, performance, and security. For instance, certain preprocessing steps of an FDP might
be performed closer to the data source for efficiency, while the sensitive transformations
required to create an sFDP can be scheduled on nodes with TEE capabilities, regardless of
their physical location. This approach enables TEADAL to maintain certain security guarantees
for sensitive operations while still allowing for efficient use of distributed resources across the
federation. Furthermore, this flexibility extends to scenarios where different parts of an FDP or
sFDP pipeline have varying security requirements. Non-sensitive portions of the workflow can
be scheduled on regular nodes, reserving the TEE-enabled resources for the most critical
operations. This granular control over task placement and security levels, effectively handled
by the workflow engine, allows for more efficient resource utilization across the federated data
lake, potentially reducing energy consumption and operational costs without compromising on
the security of sensitive data transformations. To achieve and further enhance this
architecture, more sophisticated Kubernetes placement strategies, such as node affinity and
taints, should be incorporated to optimize TEE task allocation. We will keep exploring and
demonstrating Argo Workflows' advanced pipeline control flow mechanisms to create more

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 50 of 55

complex and flexible privacy-preserving workflows. Additionally, to address the need for
handling continuous data streams, investigation into Argo's daemon containers to support
long-lived pipeline tasks will be necessary, as these are ideal for continuous streaming
applications. These future enhancements, left for the last iteration of TEADAL, will purposefully
aim to further improve the flexibility, efficiency, and security of Privacy-Preserving Data
Pipelines, enabling TEADAL to handle an even broader range of data processing scenarios
while maintaining strong privacy guarantees.

It is important to note that while TEEs currently represent the most promising and mature
technology for implementing Privacy Preserving Data Pipelines in TEADAL, we are also
actively developing prototypes leveraging other advanced privacy-enhancing technologies.
Specifically, we are exploring the use of Secure Multi-Party Computation (MPC) and Zero-
Knowledge Proofs (ZKPs), as planned in D5.2 [6]. An MPC demonstrator is also being
developed and integrated with Argo Workflows, with a particular focus on the Healthcare pilot,
where it can enable secure collaborative computations on sensitive medical data across
multiple organizations. Meanwhile, ZKPs are being integrated into monitoring pipelines, as
described in both D3.2 [5] and D5.2 [6], to provide verifiable evidence of monitoring data and
compliance with policies, without revealing sensitive information. These prototypes aim to
demonstrate the versatility of TEADAL's approach to privacy-preserving computation,
showcasing how different technologies can be applied to address varying privacy requirements
across different use cases and within the TEADAL infrastructure itself. These prototypes
eventually complement our TEE-based solutions, to offer a toolkit for secure and privacy-
preserving data processing in federated data lake environments.

4.2 PERFORMANCE AND EFFICIENCY

Achieving the cross-organizational data sharing goals while ensuring optimal use of resources
to facilitate both the application performance and the operational efficiency, is one of the main
TEADAL aspects. This aspect was discussed in detail in the previous deliverable of this work
package where the basic methodology of multi-location resource optimization based on
dynamically collected metadata was presented. In this second release, we discuss additional
topics: first, subsection 4.2.1 presents our approach to improving efficiency by transforming
raw data into more resource efficient formats; next, subsection 4.2.2 discusses the resource
utilization and efficiency aspects related to employing AI techniques, and LLMs in particular,
as part of the TEADAL platform.

4.2.1 Data Compression and Transformations for Efficiency

Dealing with large-volume FDPs and transforming them into sFDPs can cause multiple issues
in terms of storage, processing capacity needed and, more crucially, energy consumed in order
to perform these transformations. While reducing the volume of the data needed to create a
valuable sFDP might not always be possible, especially when the sFPDs are used for data
analytics, ML and AI, research has shown that transforming the raw collected data into new
formats using techniques such as data compression [15], [16], or more efficient data
representations such as those aimed at highly-sparse and homogeneous datasets [17][18],
can help in reducing the storage and transmission volume of the data.

This in turn would reduce the amount of energy required to build and share the sFDP and
would further help in speeding up the processing of the sFDP once it reaches the data
consumer. As such, we have started researching relevant techniques such as data
compression, data aggregation, data encoding and sparse representations of high-
dimensional data. The most adequate ones, or a combination thereof, will be selected as a
basis for the work to be developed in the remainder of WP4.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 51 of 55

The result of this development will be an optional processing module that sFDP builders can
use in order to reduce the volume of their datasets, without affecting the value of their FDPs
to the sFDP consumers. The module will include multiple techniques for data transformations
that sFDP builders can choose to apply to their FDP, thus aiding them in improving their data
sharing capabilities and consumption.

4.2.2 Efficiency Considerations related to use of AI

As was presented in Sections 2.1 and 3.1 above, novel AI tools technologies can be very useful
for achieving the respective goals of timely and efficiently analysing the metadata to produce
useful insights in the former case and of automating manual steps in creating and consuming
the main TEADAL data pipelines in the latter. Still, applying most if not all the AI tools is
considered costly in terms or resource and time consumption so that employing AI as part of
a TEADAL platform can seem counterproductive to the clearly stated goals of achieving the
best possible performance and efficiency. In this section, we address this concern and explain
why the proposed use of AI is beneficial to the project.

4.2.2.1 Impact Related to AI-OPs

The AI-based techniques introduced in Section2.1 are necessary to analysing large amounts
of performance data at runtime and producing actionable insights. The use of AI for operational
data analytics and optimization has already proven itself and is not disputed. This is because
most of the resource savvy ML computations, such as experimentation and model training are
performed offline and do not contribute to the runtime overheads of the system that makes use
of the resulting models for decision making and inference. After all, the AIOps systems are
usually put in place for improving the overall system performance and must be designed in a
way that their computational, memory, and energy overheads are smaller than the resulting
performance benefit for the system they are employed in.

The question is whether adding a typically more expensive generative AI technologies such as
LLMs is beneficial. This question is still under research and the project team is actively seeking
for ways to leverage these novel capabilities without incurring additional overhead that will
overweight the benefits. Final report of this research outcomes is due in D4.3. Here we can
share the general principles that guide us in augmenting AIOps toolbox with generative AI
technologies, that is: 1. separate the heavy-duty resource-hungry steps such as data
preparation, model training, etc, from the runtime decision making (inference); and 2. Keep the
models as small as possible to be relevant to use cases at hand.

4.2.2.2 Impact Related to Automatic sFDP Generation (ASG)

The AI-based techniques introduced in Section 3 reduce the complexity of sharing data,
simplify the effort for the data consumers and accelerate the creation of sFDPs for data
sharing. On the other hand, it introduces resource and energy costs by requiring additional
heavy-duty computing, including the use of GPUs. The GIN library makes use of small-scale
LLMs for generating vector embeddings (Slate 30M) and function-calling (Granite 20B) to
enable running GIN without requiring the use of high-end hardware that is required by high-
end multi-billion parameter LLMs.

In this section, we review the use of AI and its impact on day-to-day use. The GIN library is
built to leverage AI when translating natural language into explicit computer-generated
instructions, and after the translation is done, the translation (i.e., specification) can be used
repeatedly. This separates the effort into offline design-time where the user builds a data
request or sFDP code, and an online run-time where the user can execute multiple times an
efficient machine code.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 52 of 55

4.2.2.3 Impact Related to Assisting the Data Consumer

The data consumer uses the generative AI based logic in GIN when developing a data access
request, overcoming the need to understand the details of API specification and REST
mechanisms. As soon as the data access request is ready, the generated specification can be
used by the run-time engine in GIN and can be applied efficiently without the need to use GPUs
at runtime.

While the generative AI process requires a higher use of resources, including use of GPUs,
the run-time flow strictly requires only the use of (efficient) CPU resources for supporting the
data consumer.

4.2.2.4 Impact Related to Assiting The sFDP Builder

The sFDP builder runs ASG to develop and build the FastAPI server code for the sFDP.
Generative AI logic is responsible for translating the instructions, written in natural language,
that represent the contract between the data producer and data consumer into a set of
transformations that can be executed efficiently during run-time.

ASG creates FastAPI server code that does not require any AI logic, but rather uses the GIN
REST API engine to connect to the FDP, retrieve the data, and transform it according to the
instructions (Python methods) specified in the connector (i.e., data access request)
specification.

The sFDP code is expected to be generated once (or a small number of times) for each shared
data, and hence requires a higher use of resources, including use of GPUs, the sFDP server
code itself will be used frequently, but it strictly requires only the use of (efficient) CPU
resources for sharing data with the data consumer.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 53 of 55

5. TOWARDS THE NEXT ITERATION

In this document, we summarized the second iteration of the TEADAL data lake which is
focused on automating the data handling and the data sharing processes defined by the
TEADAL architecture and pilots (D2.3 [3]).

This document has described the next step refinement of TEADAL control plane architecture
over what was described in D4.1 [4], the new research-driven capabilities for automating the
manual software creation steps defined as part of the TEADAL data sharing (D2.1 [1]], and
D2.2 [1][2]), and the advanced capabilities related to the second phase focus on optimizations
related energy efficiency (D3.2 [5]) and trust (D5.2 [6]).

Going forward, capabilities described here will be validated as part of pilots’ integration towards
the Milestone 4 (the final TEADAL architecture) that will be delivered as part of the final project
demonstrators as well as of the next deliverable, D4.3.

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 54 of 55

REFERENCES

[1] TEADAL Consortium, D2.1 REQUIREMENTS OF THE PILOT CASES, 2023

[2] TEADAL Consortium , D2.2 PILOT CASES’ INTERMEDIATE DESCRIPTION AND
INITIAL ARCHITECTURE OF THE PLATFORM, 2023

[3] TEADAL Consortium, D2.3 PILOT CASES’ FINAL DESCRIPTION AND INTERMEDIATE
ARCHITECTURE OF THE PLATFORM, 2024

[4] TEADAL Consortium, D4.1 STRETCHED DATA LAKES FIRST RELEASE REPORT,
2024

[5] TEADAL Consortium, D3.2 Reducing energy footprint in federated stretched data lakes,
2024

[6] TEADAL Consortium, D5.2 TRUSTWORTHY DATA LAKES FEDERATION SECOND
RELEASE REPORT, 2024

[7] TEADAL Consortium, D6.2 Integration Report, 2024

[8] Hochreiter, S., & Schmidhuber, J. Long short-term memory Neural computation, 1997. 9
(8): 1735–1780.

[9] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &
Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv. https://arxiv.org/abs/1406.1078

[10] Ekambaram, Vijay, et al. "TTMs: Fast Multi-level Tiny Time Mixers for Improved Zero-
shot and Few-shot Forecasting of Multivariate Time Series." arXiv preprint
arXiv:2401.03955 (2024).

[11] Add reference: A. Detti, L. Funari and L. Petrucci, "μBench: An Open-Source Factory
of Benchmark Microservice Applications," in IEEE Transactions on Parallel and
Distributed Systems, vol. 34, no. 3, pp. 968-980, 1 March 2023, doi:
10.1109/TPDS.2023.3236447.

[12] OpenAPI Specification v3.1.1. https://spec.openapis.org/oas/latest.html. October
2024.

[13] Function Calling - OpenAI API. https://platform.openai.com/docs/guides/function-
calling. 2024.

[14] IBM Granite led open-source LLMs on API calling.
https://research.ibm.com/blog/granite-function-calling. August 2024.

[15] Azar, J. et al. An energy efficient IoT data compression approach for edge machine
learning. Future Generation Computer Systems. vol. 96, pp. 168–175 (2019).
https://doi.org/10.1016/j.future.2019.02.005

[16] N. G. Larrakoetxea et al. Efficient Machine Learning on Edge Computing Through
Data Compression Techniques. IEEE Access. vol. 11, pp.31676–31685 (2023).
https://doi.org/10.1109/ACCESS.2023.3263391

[17] J. Chen, S. Yang, Z. Wang and H. Mao. Efficient Sparse Representation for Learning
With High-Dimensional Data. IEEE Transactions on Neural Networks and Learning
Systems. vol. 34, no. 8, pp. 4208–4222 (2023).
https://doi.org/10.1109/TNNLS.2021.3119278

[18] A. Ruospo, E. Sanchez, M. Traiola, I. O’Connor, A. Bosio. Investigating data
representation for efficient and reliable Convolutional Neural Networks. Microprocessors
and Microsystems. vol. 86, 104318 (2021). https://doi.org/10.1016/j.micpro.2021.104318

https://arxiv.org/abs/1406.1078
https://spec.openapis.org/oas/latest.html
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://research.ibm.com/blog/granite-function-calling.%20August%202024
https://doi.org/10.1016/j.future.2019.02.005
https://doi.org/10.1109/ACCESS.2023.3263391
https://doi.org/10.1109/TNNLS.2021.3119278
https://doi.org/10.1016/j.micpro.2021.104318

 D4.2: Stretched data lakes - second release report (V 1.0)

© 2022-2025 TEADAL Consortium Page 55 of 55

[19] Prometheus. Power your metrics and alerting with the leading
open-source monitoring solution, https://prometheus.io/.

[20] Grafana Labs. Grafana: The open observability platform. https://grafana.com/

[21] Thanos - Highly available Prometheus setup with long term storage capabilities.
https://thanos.io/

[22] OpenTSDB - A Distributed, Scalable Monitoring System. http://opentsdb.net/

[23] Prophet | Forecasting at scale. https://facebook.github.io/prophet/

[24] OpenAPI Initiative. https://www.openapis.org/

[25] What Are Tools Anyway? A Survey from the Language Model Perspective, Zhiruo
Wang, Zhoujun Cheng, Hao Zhu,Daniel Fried and Graham Neubig, 2024.
https://arxiv.org/abs/2403.15452

[26] Chroma - the open-source embedding database. https://github.com/chroma-
core/chroma

[27] Open-source granite-20b-functioncalling function calling LLM.
https://huggingface.co/ibm-granite/granite-20b-functioncalling

[28] Kubernetes Cluster Federation. https://github.com/kubernetes-retired/kubefed

[29] Day 24: Kubernetes Multi-Cluster Management | by Vinoth Subbiah | Medium.
https://medium.com/@vinoji2005/day-24-kubernetes-multi-cluster-management-
7e53dfe465dd

[30] Kubernetes Cluster Federation: A Practical Guide. Overcast blog.
https://overcast.blog/kubernetes-cluster-federation-a-practical-guide-f730af724762

[31] Open Cluster Management. https://open-cluster-management.io/

[32] Open, Multi-Cloud, Multi-Cluster Kubernetes Orchestration. Karmada.
https://karmada.io/

[33] Multi-Cluster Kubernetes. Simplified. | Admiralty. https://admiralty.io/

[34] KubeAdmiral. https://kubeadmiral.io/

[35] KubeAdmiral: next-generation multi-cluster orchestration engine based on
Kubernetes. CNCF. https://www.cncf.io/blog/2023/11/24/kubeadmiral-next-generation-
multi-cluster-orchestration-engine-based-on-kubernetes/

[36] Landing - KubeStellar. https://docs.kubestellar.io/

[37] KubeStellar Explainer - New Architecture - Same Functionality.
https://www.youtube.com/watch?v=M7yh1Wx-J2A

[38] The Cluster API Book. https://cluster-api.sigs.k8s.io/

[39] Workload bootstrap using GitOps. https://cluster-api.sigs.k8s.io/tasks/workload-
bootstrap-gitops.

[40] Argo Workflows. https://argoproj.github.io/workflows/

[41] Kubeflow. https://www.kubeflow.org/

https://prometheus.io/
https://grafana.com/
https://thanos.io/
http://opentsdb.net/
https://facebook.github.io/prophet/
https://www.openapis.org/
https://arxiv.org/abs/2403.15452
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://huggingface.co/ibm-granite/granite-20b-functioncalling
https://github.com/kubernetes-retired/kubefed
https://medium.com/@vinoji2005/day-24-kubernetes-multi-cluster-management-7e53dfe465dd
https://medium.com/@vinoji2005/day-24-kubernetes-multi-cluster-management-7e53dfe465dd
https://overcast.blog/kubernetes-cluster-federation-a-practical-guide-f730af724762
https://open-cluster-management.io/
https://karmada.io/
https://admiralty.io/
https://kubeadmiral.io/
https://www.cncf.io/blog/2023/11/24/kubeadmiral-next-generation-multi-cluster-orchestration-engine-based-on-kubernetes/
https://www.cncf.io/blog/2023/11/24/kubeadmiral-next-generation-multi-cluster-orchestration-engine-based-on-kubernetes/
https://docs.kubestellar.io/
https://www.youtube.com/watch?v=M7yh1Wx-J2A
https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/tasks/workload-bootstrap-gitops
https://cluster-api.sigs.k8s.io/tasks/workload-bootstrap-gitops
https://argoproj.github.io/workflows/
https://www.kubeflow.org/

